

Soufre et fertilisation des cultures

Olivier Goujard

Animateur du groupe Soufre du com i fer

Les différentes formes d'apport de Soufre, intérêts agronomiques

Plan de la présentation

Le soufre dans le sol

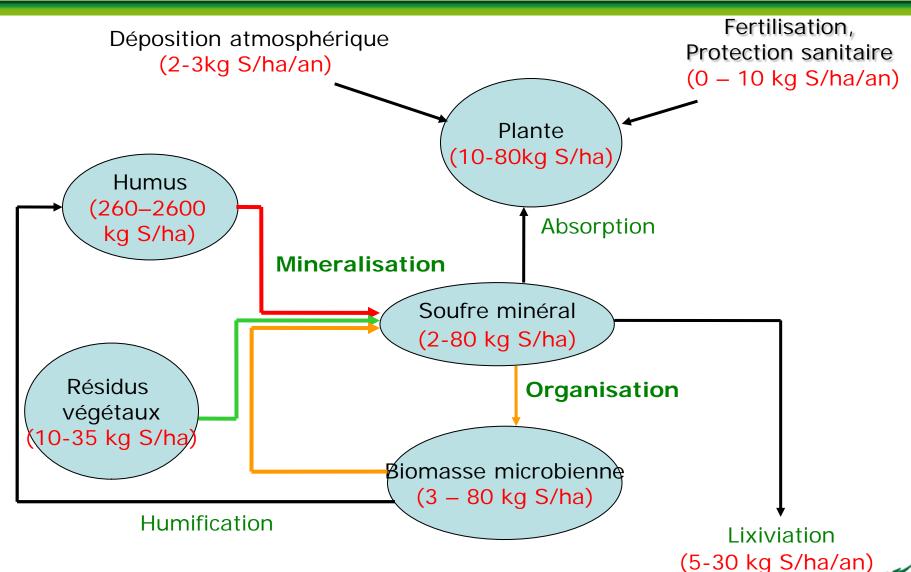
- Le cycle du soufre
- La forme sulfate
- Approche bilancielle du soufre en France

Le soufre dans les plantes

- Rôle et fonctions
- Besoins des cultures
- Carences en soufre

La fertilisation soufrée

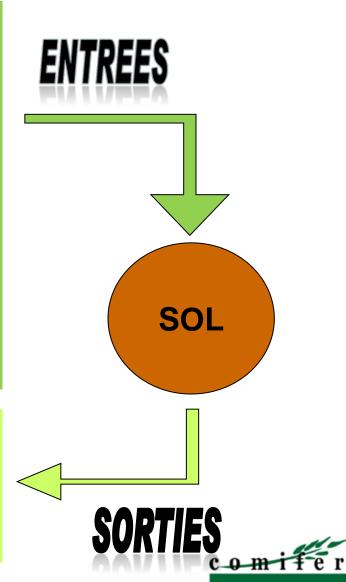
- Réponse des cultures
- Effets sur la qualité des récoltes
- Les indicateurs de la nutrition soufrée des cultures
- Les préconisations
- Les différents engrais soufrés


Le soufre dans le sol

- La teneur en S des sols ~ 0.02-0.2%
 - Mais peut atteindre 1% en sol tourbeux
- 60 à 95% du S sous forme organique
 - Humus, résidus de cultures, biomasse microbienne
- S minéral:
 - Plusieurs formes possibles en fonction de l'état du sol
 - Forme plus ou moins oxydée en fonction du potentiel redox:
 - \vee Sulfure (H₂S ou S²⁻, -II)
 - ∨ Soufre élémentaire (S, 0)
 - \vee Thiosulfate (S₂O₃²⁻,+II)
 - \vee Sulfite (H₂SO₃ ou SO₃²⁻, +IV)
 - \vee Sulfate (SO₄²⁻,+VI)
- Cycle du S similaire à celui de l'N:
 - o minéralisation organisation

Le cycle du soufre dans le sol

Le soufre dans le sol


- La forme sulfate SO₄²- est la forme clé pour la nutrition des plantes
 - Absorbée par les racines
 - Produit final de la minéralisation
 - Peut être adsorbé par des oxydes (Fe, Al) ou la matière organique
 - Très mobile et facilement lessivable dans le sol (idem NO₃-)
 - Aucun risque actuellement pour l'environnement
- Mesure de la teneur en sulfate du sol par analyse de reliquats
 - Méthode normalisée (NF ISO 11048)
 - Proposée par certains laboratoires français (couplée à reliquat N)
 - Contribue à mieux quantifier le bilan du soufre à la parcelle
- Mesure de la teneur en soufre extractible (soufre sulfate + soufre adsorbé) par la méthode SCOTT (extraction au KH₂PO_{4:})
 - Pratiquée par quelques laboratoires.
 - Références sur teneurs seuils de réponse (Arvalis)

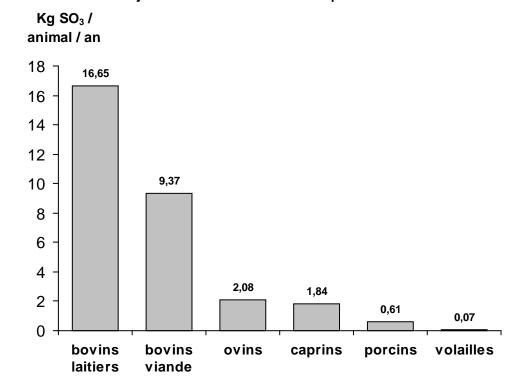
Bilan du soufre en France

- Apport par les fertilisants minéraux
- Apport comme fongicide
- Apport par les déjections animales
- Retombées atmosphériques
- Résidus des IAA et boues d'épuration
- Apport par les eaux d'irrigation
- Exportations par les cultures
- Pertes par lixiviation

Apports de Soufre fongicide

- Anti oïdium (vigne, arboriculture fruitière, cultures légumières et horticoles, blé) ~1.5 M ha
- Utilisation en poudrage ou en pulvérisation (S micronisé)
- Marché qui a fortement chuté: environ 20 000 t (source Syngenta)

TOTAL fongicides ~ 50 000 t SO₃ par an

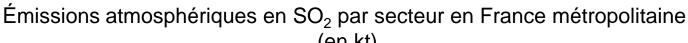

Apports de S par les déjections animales

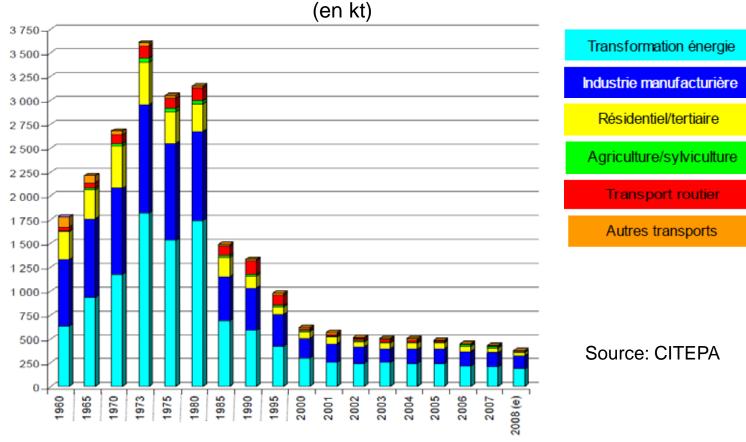
280 millions de tonnes de déjection animales sont produites par l'agriculture française annuellement;

3 à 4 millions d'ha concernés par des épandages

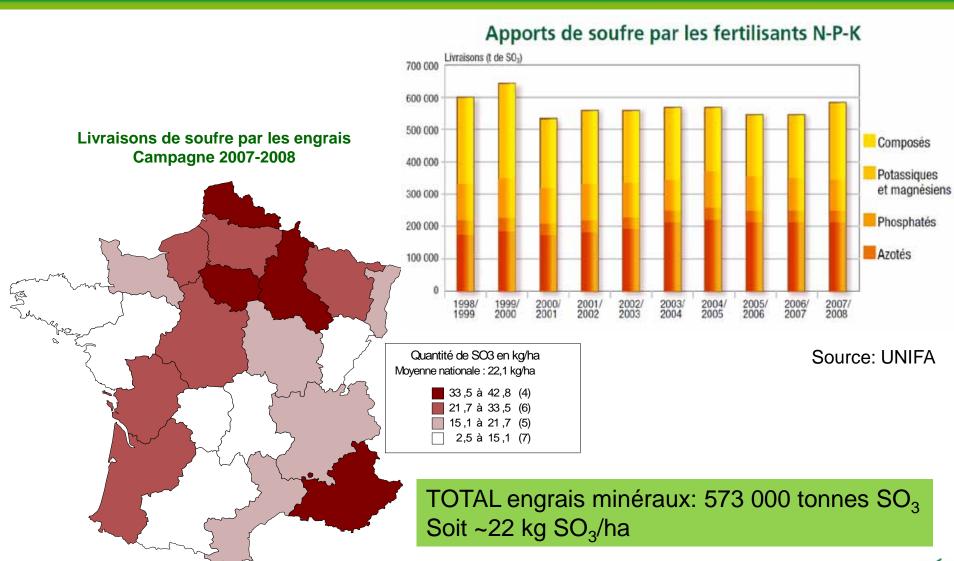
Fumiers, lisier: 0,10 à 0,15% SO₃ / produit brut

Quantité de soufre présent dans les déjections animales d'après J.ERIKSEN



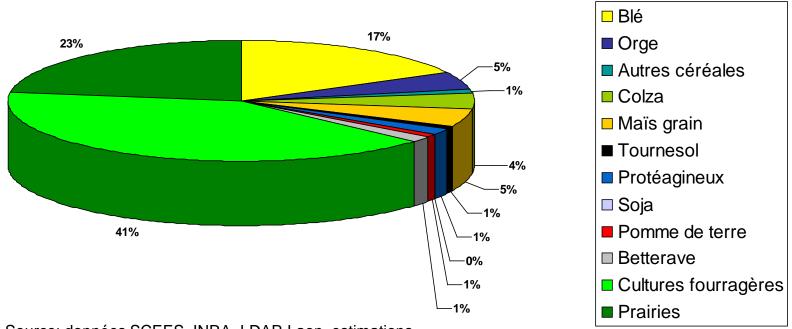

TOTAL déjections animales ~ 330 000 t SO₃ par an mais sur 15% de la SAU

Apports de S par retombées atmosphériques



435 kt de SO₂ émis en 2007 (eq à 544 kt SO₃) soit environ 10 kg SO₃/ha

Apports de soufre par les fertilisants N-P-K-Mg



Exportations par les cultures

Exportations de SO₃ par les productions végétales

Source: données SCEES, INRA, LDAR Laon, estimations

TOTAL Gdes cultures+cultures fourragères+STH ~ 742 000 t SO₃

Pertes par lixiviation

Apports et pertes annuelles en S mesurés dans divers lysimètres en France (d'après Muller et Ballif, 1991)

Lieu et période	Type de sol	Précipitations mm	Apports par les engrais kg SO ₃ / ha / an	Pertes par drainage kg SO ₃ / ha / an
Quimper 1954-1965	Granitique	1090	?	50
Versailles * 1973-88	Limoneux	660	40*	75
Clermont-Ferrand 1959-1966	Argilo-calcaire	570	190	193
Châlons-sur- Marne 1977-1982	Rendzine	630	338	340
Le Magneraud 1986-2004 **	Terres de groie	650	30	50
Le Magneradu 1900-2004	Terres de grole	030		

^{*}sans apport de soufre depuis 1978

Lixiviation très variable selon: les types de sol, la pluviométrie et les apports de soufre

^{**} données Arvalis

Bilan du soufre en France

sur 25,8 M d'ha fertilisables (SAU – jachère – parcours & pacages)

 Apport par les fertilisants minéraux 	~22 kg SO ₃ /ha
--	----------------------------

•	Apport par les fongicides	~2 kg SO ₃ /ha
	, apport par 100 forigionaco	

(~33 kg SO₃/ha épandu)

Apport par les déjections animales ~12 kg SO₃/ha

(~80 kg SO₃/ha épandu)

Retombées atmosphériques ~10 kg SO₃/ha

Exportations par les cultures ~28 kg SO₃/ha

• Lixiviation $(\sim 50 \text{ kg SO}_3/\text{ha ?})$

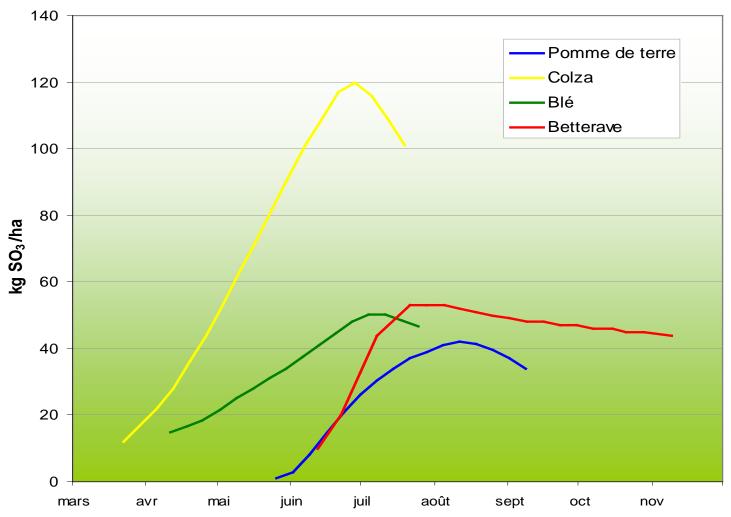
- Approche bilancielle difficile avec de fortes disparités régionales
- Il y a des **risques important** d'apparition de carence en soufre dans certaines **zones cultivées**.

Le soufre dans les plantes

- Essentiel à la synthèse des protéines (avec N)
- Constituant indispensable des acides aminés essentiels soufrés: cystéine, cystine et méthionine
- Coenzyme, il est nécessaires à la formation des chloroplastes, donc indispensable à la photosynthèse
- Intervient dans la synthèse des acides gras (lipides) et d'enzymes vitales et de quelques vitamines (vitamine B1...)
- Absorption par la plante: compétition SO₄²⁻ / NO₃⁻
 - importance du rapport N/S à fertilisation N avec S

Besoins des cultures en soufre

Exigence	Cultures	Besoins en kg SO ₃ / ha
Forte	Colza, choux, moutarde, ail, oignon, luzerne, trèfle, graminées fourragères	200 à 100
Moyenne	Céréales à paille, maïs, pomme de terre, betterave sucrière et fourragères	100 à 50
Faible	Toutes les autres	50 à 20



Mobilisations en soufre des cultures

Mobilisation en soufre de différentes cultures

source: SADEF Pôle d'Aspach

Symptômes de carence en soufre

Le soufre est très peu mobile dans la plante: à les carences apparaissent d'abord sur les feuilles les plus **jeunes**.

<u>Symptômes</u>: jaunissement général de la feuille (carence facilement confondue avec celle en N)

Réponse des cultures à la fertilisation soufrée

- Grandes cultures répondant bien à la fertilisation soufrée:
 - Colza et céréales à paille
- De nombreux essais en France (ARVALIS, CETIOM) et synthétisées au niveau européen (cf « Crop responses to sulphur fertilization in Europe » F.J.Zhao et al. IFS proceedings 504, 2002) ont permis de définir :
 - La dose d'apport optimale
 - La période d'application optimale
 - Le rapport optimal entre fumure azotée et soufrée
- Autres cultures présentant une certaine sensibilité à la nutrition soufrée:
 - betterave sucrière
 - cultures légumineuses
 - pomme de terre
 - légumes de plein champ (brassicacées, liliacées)

Réponse des cultures à la fertilisation soufrée

Essai sur colza (BASF)

Azote + soufre

Blé tendre d'hiver:

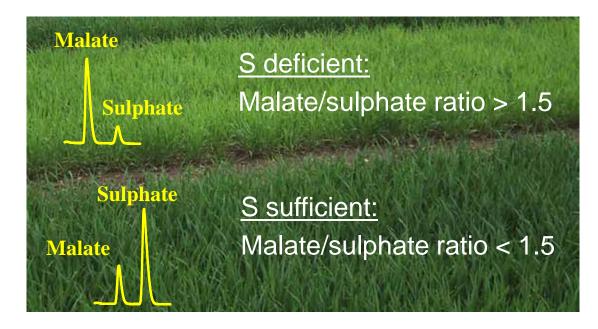
Azote seul

- 3 dt/ha en moyenne et jusqu'à 20 dt/ha (source Arvalis)
- Colza:
 - 10 à 20 dt/ha (source Cetiom)

Influence de la fertilisation soufrée sur la qualité

- L'effet sur la qualité de l'apport de S et la synergie N/S ont été principalement étudiés sur blé tendre
 - Ø « Assimilation par le blé tendre du soufre et de l'azote apporté en foliaire et influence de l'interaction N/S sur les protéines du grain et la qualité panifiable » (thèse de doctorat de Illa TEA / Grande Paroisse).
 - Ø Résultats: impacts de la synergie N/S
 - influe significativement sur les teneurs en N et S des grains et sur les coefficients réels d'utilisation du soufre sans effet sur le rendement.
 - augmente significativement la teneur en protéine du grain ainsi que les paramètres W (force), G (gonflement) et L (extensibilité).
 - influe sur la nature et la proportion des protéines: favorise la gliadine (riche en S) et la gluténine (pauvre en S).

Les indicateurs de la nutrition soufrée des cultures


- Indicateurs de nutrition soufrée des cultures:
 - Test Malate/Sulfate BLAKE-KALF
 - Teneur SO₄ dans le jus de base des tiges NUTRICHECK
 - Diagnostic foliaire à la floraison
 - Teneur en soufre des grains
- Indicateurs récemment/en cours de mise au point:
 - Réflectométrie GPN® Pilot
 - Fluorimétrie SADEF

Le diagnostic malate/sulfate BLAKE-KALFF

- Mis au point en Angleterre en 2000 par Mme M.Blake-Kalff (Hill Court Farm Research) sur colza et céréales
- Basé sur le ratio malate/sulfate dans les vacuoles
- Applicable sur une large plage de stades (précoces)
- Ne nécessite qu'une seule mesure
- Coût du test en Angleterre: 15 £ (~14 €)

comifer

- Méthode Soufre développée par la société Challenge Agriculture en 2000
- Repose sur la teneur en sulfate dans le jus de base de tiges (JBT) des blés au stade 2 nœuds
- Pour une bonne interprétation, le stade préconisé doit être respecté

Diagnostic foliaire floraison

- Teneur en S % de la MS dans les feuilles 2 et 3 à la floraison sur un échantillon de 30 plantes
- Indicateur référencé sur essais soufre depuis 1986, considéré comme le plus discriminant à indicateur de référence
- Seuil de 0.20 %, risque de carence probable
- Mesure trop tardive pour correction

Les indicateurs de la nutrition soufrée des cultures

- Evaluation comparée sur 61 essais (2006/2007) de 3 indicateurs de nutrition soufrée par ARVALIS au stade 2 nœuds des céréales: (Perspectives Agricoles N 353 fev09)
 - Test malate/sulfate
 - Teneur en sulfate du jus de base des tiges
 - GPN® Pilot soufre

Conclusions:

- Peu d'essais avec des écarts de rendement > 5q/ha
- Les 3 indicateurs ont donné satisfaction en détectant les carences mais les seuils doivent être adaptés
- Les outils se sont montrés complémentaires de la grille de décision Arvalis

Les préconisations de fertilisation soufrée

CETIOM / Colza

- Apport systématique de 75 kg SO₃/ha,
- Positionné en sortie d'hiver (début élongation des tiges)
- La forme de l'engrais importe peu (pas de forme S élémentaire)
- Préconisation bien suivie par les agriculteurs
 - 70% des surfaces colza ont reçu un apport de soufre avec une dose moyenne de 73 kg SO₃/ha selon l'enquête CETIOM 2008

Les préconisations de fertilisation soufrée

Ø Une grille de préconisation des doses sur céréales a été publiée dans le « Perspectives Agricoles » N 330 de janvier 2007

Grille de décision d'un apport de soufre sur céréales d'hiver et de printemps (cas des situations sans apports réguliers de fumier) (tab. 1)

	, i	Apport (kg SO ₃ /ha) à réaliser :		
	Pluie 1/10 au 1/03	si apport sur le précédent > 60 kg SO ₃ /ha	si précédent sans apport de soufre	
Risques élevés: sols superficiels filtrants: sols argilo-calcaires superficiels, sols sableux caillouteux, limons caillouteux superficiels	> 300 mm	40	50	
	< 300 mm	20	30	
Risques moyens: sols argilo-calcaires moyennement profonds, limons battants froids humides	> 500 mm	30	40	
	300 à 500 mm	20	30	
	< 300 mm	0	20	
Risques faibles: sols profonds sains,	> 500 mm	20	30	
limons argileux profonds, limons francs, sols argileux	300 à 500 mm	0	20	
	< 300 mm	0	0	

comifer

Les engrais soufrés

Formes de S disponibles sur le marché:

Sulfate

- La forme la plus utilisée dans les engrais
- Associé à un ou plusieurs autres éléments : N, P, K, Mg
- Forme directement assimilable par la plante.

Thiosulfate

- Transformation relativement rapide en sulfate
- Forme liquide associée à N, K

S élémentaire (micronisé)

- Oxydation en sulfate par les micro-organisme du sol plus longue
- Effet acidifiant sur le sol
- Utilisé essentiellement comme fongicide

Les engrais soufrés

Déjà un large choix en engrais simples:

Sulfate d'ammoniaque: 21%N + 59% SO₃

• Sulfonitrate d'ammoniaque 26%N + 32.5% SO₃

Solution azotée soufrée : 20.5%N + 13.5% SO₃

• Ammonitrates soufrés : 26+13; 25+20; 24+15; 30+7...

Azotés soufrés (urée+AS21)
 20-30%N + 30-45% SO₃

• Superphosphates SSP 18% $P_2O_5 + 29\% SO_3$

Sulfate de magnésium (Kiesérite) 25% MgO + 50% SO₃

Sulfate de potassium
 50% K₂O + 45% SO₃

• Les engrais composés: de nombreuses formules...

Conclusion

- Le soufre est indispensable à la synthèse des protéines :
 - Les plantes ont besoin de soufre
- Les sols reçoivent moins de soufre qu'il y a 25 ans :
 - Les engrais minéraux plus concentrés en N, P₂O₅ et K₂O avec moins de SO₃
 - Apports de lisiers et fumiers concentrés dans les régions d'élevage
 - Très forte réduction des émissions et dépositions de SO₂ atmosphérique
- Les indicateurs de nutrition soufrée permettent essentiellement d'évaluer les risques pour les années suivantes et de décider d'apports de soufre dès la sortie d'hiver.
- Il y a encore des marges de progrès sur le pilotage conjoint de la fertilisation azotée et soufrée en cours des cycles de culture.

Merci pour votre attention

