

L. Jordan-Meille ¹,

A. Mollier ¹,

C. Montagnier ²,

G. Véricel³,

P. Tauvel ⁴,

P. Denoroy ¹

Bordeaux Sciences Agro

Tél.: + 33 (0)5 57 35 07 58

lionel.jordan-meille@agro-bordeaux.fr

¹ UMR ISPA Bordeaux Sciences Agro - INRAE, ² INRAE UE GC Versailles-Grignon, ³ ARVALIS, ⁴ ITB

Réévaluation des seuils d'impasse des cultures à la teneur en phosphore biodisponible du sol

Problématique et objectifs

Raisonnement fertilisation P: analyse de terre (P biodisponible) + comparaison aux seuils d'impasse (« grille COMIFER »)

Seuils d'impasse de la « Grille COMIFER » :

- Ancienneté (1995)
- Faible traçabilité de la méthode de calcul
- Faible traçabilité des données-terrain

		Seuils P ₂ O ₅ , en mg/kg - Méthode Olsen					
Exigence de la culture>		Forte exigence		Moyenne exigence		Faible exigence	
Seuil>		Trenforcé	Timpasse	Trenforcé	Timpasse	Trenforcé	Timpasse
Nord-Picardie	Limons battants	50	80	50	80	20	70
	Limons argileux	50	80	50	80	20	70
	Argiles	50	80	50	80	20	70
	Cranettes	145	210	130	150	60	135
				/	<u></u>		

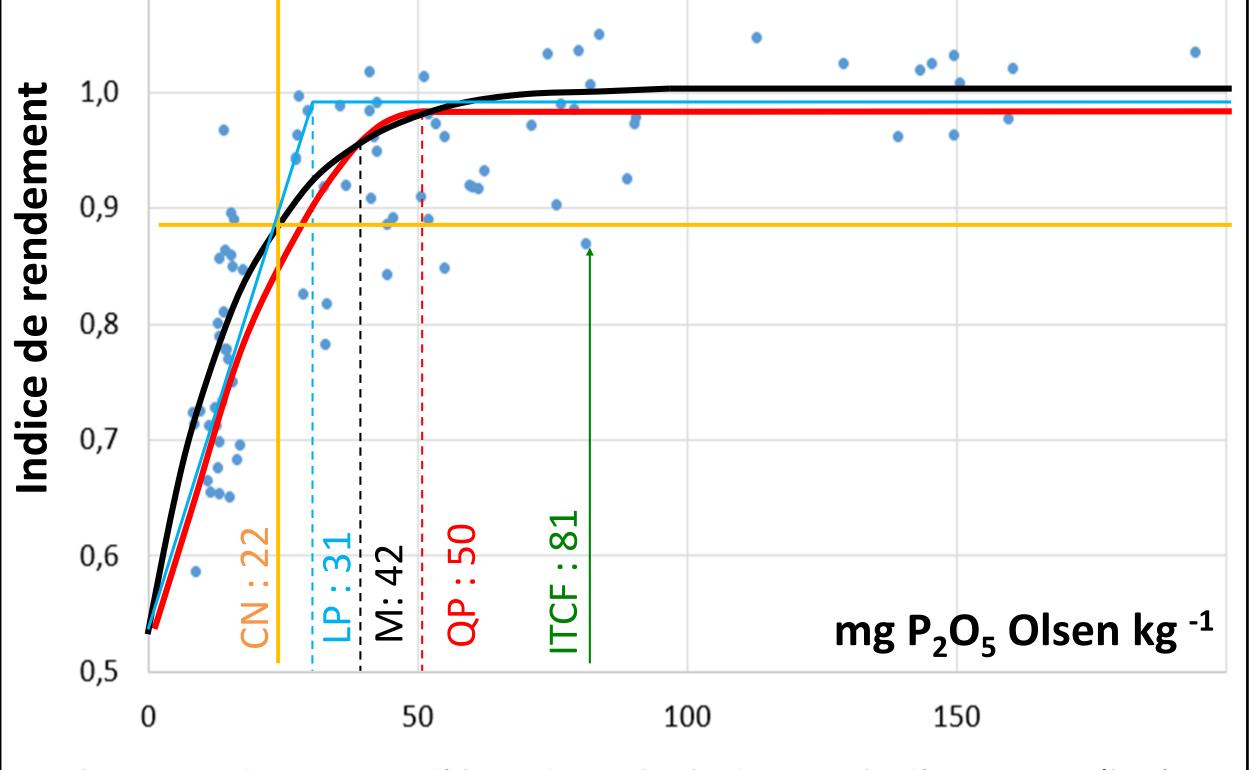
-> Réévaluer les seuils d'impasse avec une méthode et des données assurant une traçabilité totale

- Collecte de données d'essais agronomiques en cours
- Choix d'une méthode......ce poster
- Calcul des seuils sur toute les données et application au raisonnement de la fertilisation...... 2022

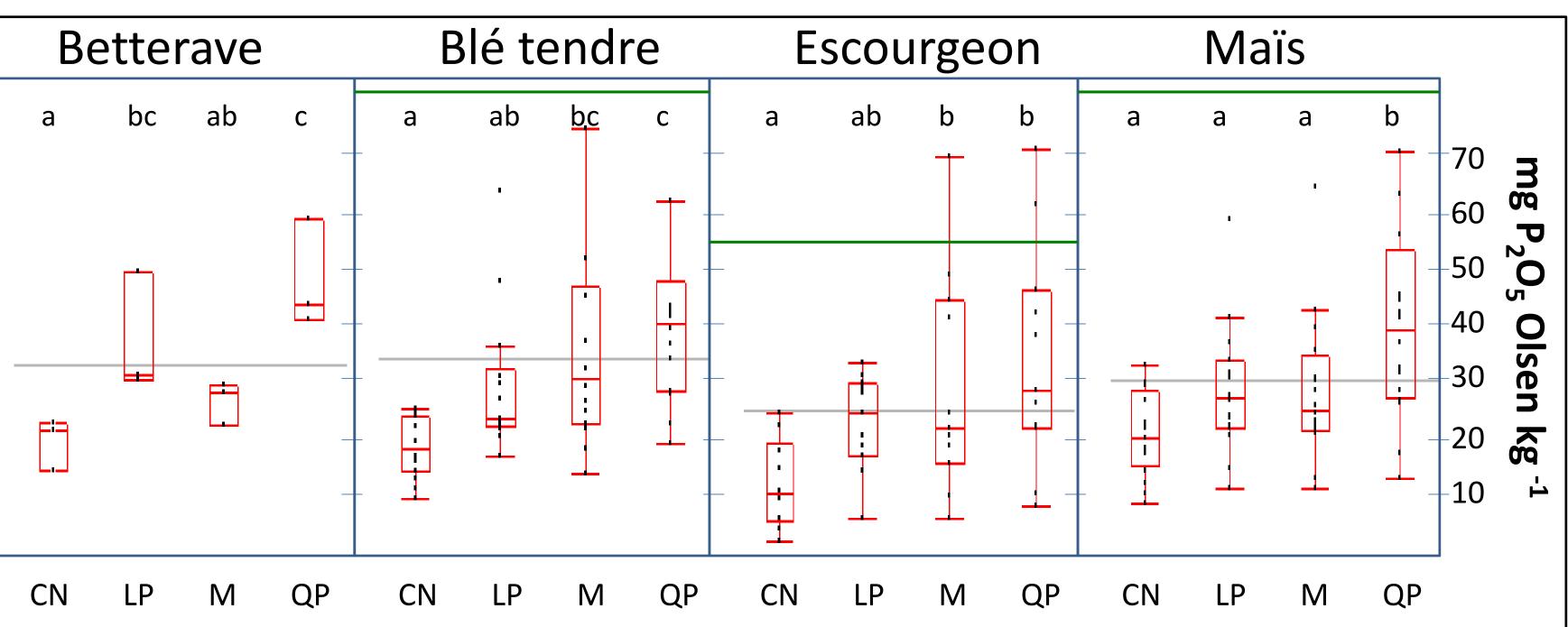
Matériel et méthodes

Dispositif P de longue durée de Grignon-Folleville (2010 à 2018)

14 essais blé tendre, 16 essais maïs grain, 11 essais escourgeon, 3 essais betterave


Pour chaque « essai » (1 culture, une année, un lieu) :

- → Estimation du seuil d'impasse pour P (Olsen) par les modèles linéaire-plateau, quadratique-plateau, Mitscherlich (95%), Cate Nelson, ITCF (« grille COMIFER »)
- → Estimation de la qualité de l'ajustement des modèles (RMSE)


Sur les valeurs moyennées par culture et par lieu :

- → Comparaison des valeurs moyennes par méthode, proximité à la « Grille COMIFER »
- A terme, choix d'une méthode ou d'une combinaison de méthodes

Résultats

Application des 5 modèles de calcul du seuil d'impasse (linéaire plateau (LP), quadratique-plateau (QP), Mitscherlich (M), Cate-Nelson (CN) et ITCF) au données «blé tendre ». Superposition des 14 années

Comparaison des distributions des seuils d'impasse obtenus sur les quatre cultures selon les méthodes de Cate-Nelson (CN), Linéaire-Plateau (LP), Mitscherlich (M) et Quadratique-Plateau (QP). Trait vert : valeur de référence obtenues en appliquant la méthode ITCF au jeu de données (hors betterave). Trait gris : moyenne des seuils obtenue par les 4 méthodes testées. Lettres minuscules : groupes significativement différents ($\alpha = 5\%$), pour une culture donnée

- → la méthode utilisée pour la « grille COMIFER » fournit les plus fortes valeurs
- → La méthode Cate-Nelson fournit toujours les seuils les plus faibles (pour une perte de rendement 10-15 %)
- → Le modèle de Mitscherlich a un léger avantage concernant la qualité de son ajustement (non montré ici)
- → Aucune des cultures ne se distingue significativement des autres au niveau de ses seuils de réponse

Application de la présente méthode d'étude à une gamme plus large de cultures et de sols

→ viser la production d'un nouveau jeu de références.

