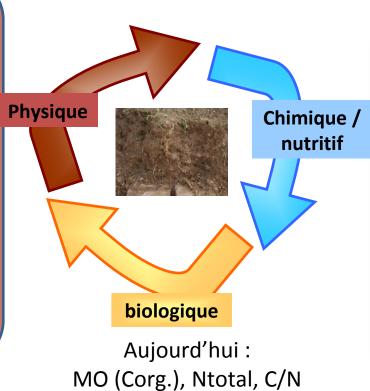
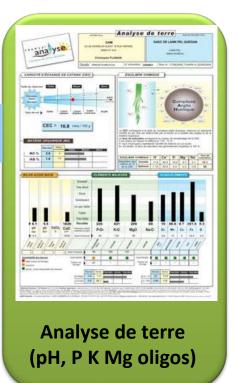
VALORISER LES INDICATEURS MICROBIOLOGIQUES EN GRANDES CULTURES ET EN POLYCULTURE-ELEVAGE

Alain BOUTHIER (ARVALIS)
Robert TROCHARD (ARVALIS)
Matthieu VALE (AUREA)
Rémi CHAUSSOD (SEMSE)
Rachida NOUAÏM (SEMSE)




Diagnostic de fertilité basé sur des indicateurs physiques et chimiques

Complétée par observation terrain (profil, test bêche)

Besoin d'autres indicateurs pour appréhender les composantes de la qualité biologique d'un sol

Besoin d'élargir le champ du conseil à partir de l'analyse de terre

Conseil actuel

- > Fertilisation N P K Mg oligos
- Amendements minéraux basiques
- > Bilan humique

- Apports selon diagnostic biodisponibilité él^{ts} nutritifs dans le sol
- Apports amendements minéraux basique selon SAB
- Gestion stock de MO

à élargir:

Apports organiques x couverts végétaux x travail du sol

Optimiser fonctions biologiques du sol:

- Recyclage des nutriments
- Transformation du carbone

Indicateurs étudiés par ARVALIS depuis 2010 en partenariat avec AUREA et SEMSE

Activité microbienne

Diversité

Caractérisation de la MO

Biomasse microbienne (BMI)

- Potentiel de minéralisation C (CMIN28j)
- Potentiel de minéralisation N (NMIN28j)
- Activité enzymatique (FDA-hydrolase) (FDA)
- Aptitudes métaboliques (diversité fonctionnelle) (BIODIF)
- Fractionnement granulométrique MO
- Métabolites microbiens carbonés et azotés (C-MOL, N-MOL)
- Techniques pour certaines déjà anciennes
- Certaines sont normalisées
- Certaines sont transférées dans des laboratoires commerciaux d'analyses de sols.

Evaluer des indicateurs sur des expérimentations de moyenne et longue durée

- Faisabilité de la mesure en lien avec maîtrise de la variabilité spatiale et temporelle
- Sensibilité aux historiques d'apports de PRO, de couverts végétaux, de W du sol ?
- Apport d'information par rapport aux indicateurs existants (Corg., Ntot.) ?
- Liens avec des services écosystémiques: fourniture N?

Dispositifs expérimentaux étudiés de 2010 à 2015

Expérimentations en grandes cultures ayant différencié des pratiques culturales depuis plusieurs années

Niveau d'intensification

Essai ARVALIS

- Fermes de Boigneville: 5 à 25 ans
- Lyon St Exupéry (69): 8 ans

Essais ARVALIS/Partenaires en systèmes Bio

- Etoile sur Rhône (26): 8 ans (agribio)
- Villarceau (95): 8 ans (agribio)

Travail du sol

Essais ARVALIS

- Boigneville (91): 42 ans
- Boigneville (w sol X cipan): 22 ans

Essai ARVALIS/CREAS

Lyon St Exupéry (69): 8 ans

PRO élevages

Essais ARVALIS

- La Jaillière (44): 10 ans
- Le Rheu (35): 10 ans

Essais ARVALIS-OIER Les Bordes

Jeu les Bois (36): 10 ans

CIPAN

Essai ARVALIS

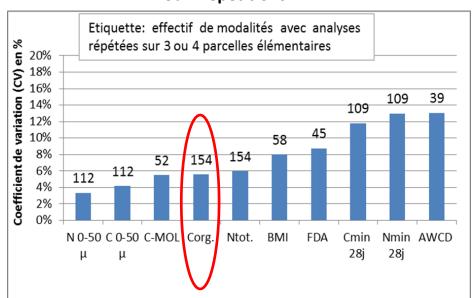
Espèces de CIPAN Boigneville (91): 10 ans

Essai AREP

Thibie (51): 20 ans

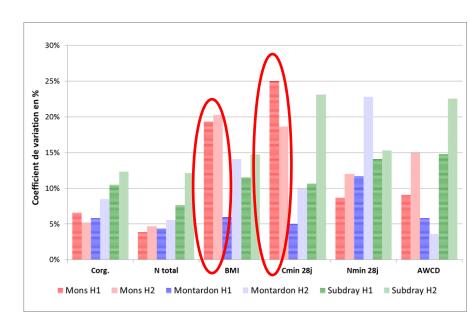
Essai CRAB/ARVALIS

Kerlavic (29): 17 ans



Variabilité spatiale associée aux mesures des différents

bioindicateurs.

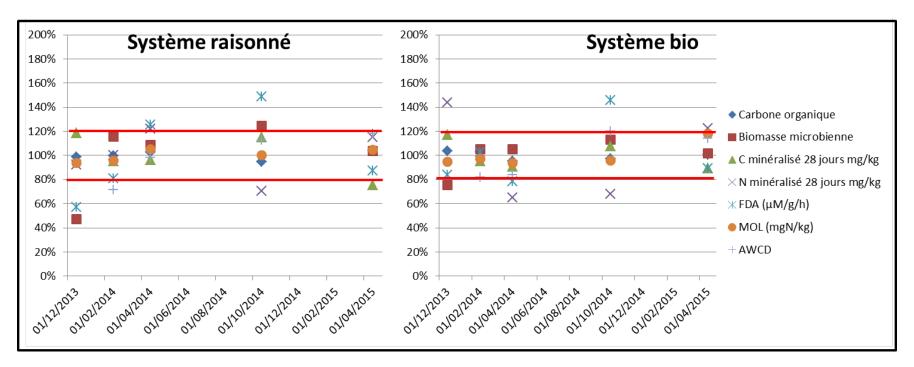

Variabilité spatiale plus ou moins importante selon les indicateurs...

Valeur médiane du coefficient de variation (CV) calculé à partir d'analyses réalisées dans les parcelles élémentaires de modalités d'essais en dispositif blocs randomisés à 3 ou 4 répétitions.

Variabilité spatiale plus ou moins importante selon les sites

Coefficient de variation (CV) de 6 paramètres réalisées sur 2 horizons au sein de 3 parcelles agricoles d'une dizaine d'hectares (essais SYPPRE).

Biomasse microbienne et potentiel de minéralisation sensibles à l'état structural (Parcelle de Mons)

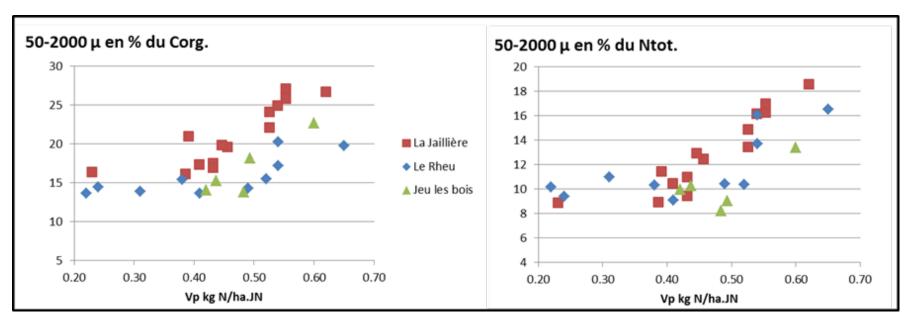


Variabilité temporelle à court terme associée aux mesures des

différents bioindicateurs.

- ☐ Variabilité temporelle plus ou moins importante selon les indicateurs,
- ☐ plus importante pour FDA et potentiel de minéralisation N.
- ☐ Elle reste contenue dans une gamme de ± 20 % autour de la moyenne

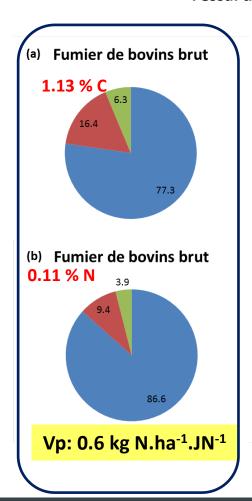
Evolution des valeurs de quelques paramètres chimiques et microbiologiques exprimées en % de la moyenne, au cours de 5 prélèvements réalisés entre novembre 2013 et avril 2015 sur 2 parcelles des fermes de Boigneville.

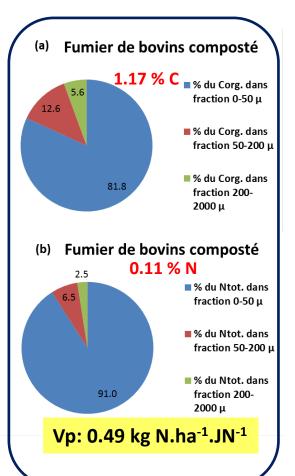


8 à 10 ans d'historique d'apports répétés de produits résiduaires organiques (pro) issus d'élevages

- ☐ Analyses entre 2 et 4 ans après le dernier apport de PRO
- ☐ Réponse des bioindicateurs dans les mêmes proportions que Corg. et Ntot.
- ☐ Excepté fractions granulométriques du C et du N.

Relation entre la vitesse de minéralisation d'azote au champ et la proportion (%) de Corg. et Ntot. dans la fraction 50-2000 µ, mesurés en fin d'essai sur 3 essais avec apports répétés d'effluents d'élevages pendant 8 à 10 ans.





8 à 10 ans d'historique d'apports répétés de produits résiduaires organiques (pro) issus d'élevages

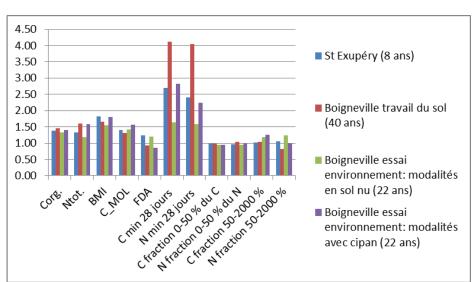
Composition granulométrique du C (a) et N (b) de la couche 0-20 cm des modalités fumiers de bovins bruts et compostés de l'essai de Jeu les bois.

Discrimination de l'effet compostage par le fractionnement granulométrique, cohérent avec la minéralisation d'azote mesurée au champ

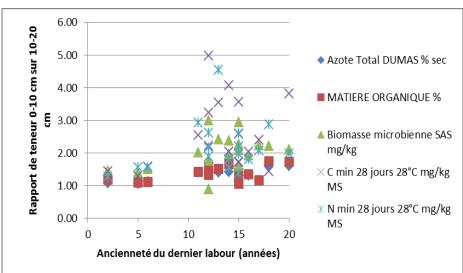
10 à 17 ans d'historique de mise en place de couverts végétaux en période d'interculture

□ Pas de réponse des fractions C et N à l'historique de couverts/sol nu
 □ Réponse variable des autres bioindicateurs selon les sites
 □ Réponse plus importante sur essai Boigneville-espèces: présence de légumineuses

+: effet significatif (proba ≤ 5%) NS: pas d'effet mis en évidence	Thibie (51)	Boigneville-environnement (91)	Boigneville-espèces de couverts (91)	Kerlavic (29)
Date de début essai (dates de mesure bioindicateurs)	1990 (2010, 2015)	1991 (2011)	2003 (2014)	1993 (2011)
Fractionnement granulométrique	NS	NS	NS	NS
Biomasse microbienne	NS	NS	+	Pas de mesures
Métabolites microbiens (C ou N)	+ (C)	+ (C)	+ (N)	
Minéralisation C	NS	+ (en non labour, 0-10 cm)	+	
Minéralisation N	NS	+ (en non labour, 0-10 cm)	+	
FDA Hydrolase	NS	NS	NS	



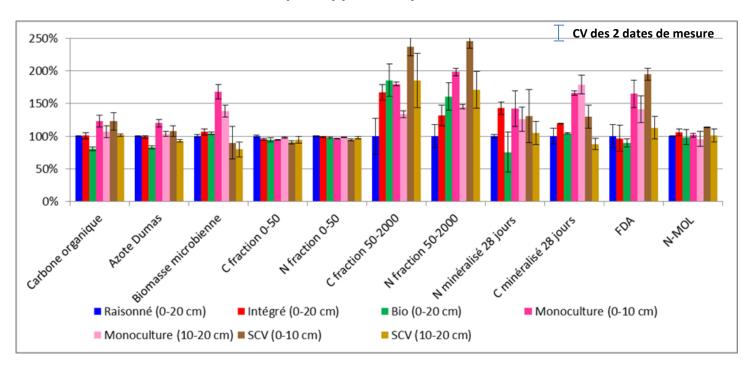
8 à 40 ans de non labour:



- ☐ Gradients plus ou moins importants selon bioindicateurs: CMIN28j = NMIN28j > BMI > C-MOL
- ☐ Pas ou très peu de gradient pour fractions granulométriques

Rapport de la teneur sur 0-10 cm à celle sur 10-20 cm, en Corg., Ntot. et 9 bioindicateurs sur les 3 essais travail du sol de longue durée

Rapport de la teneur sur 0-10 cm à celle sur 10-20 cm en Corg., Ntot. et pour 3 bioindicateurs, selon l'ancienneté du dernier labour sur 22 parcelles en SCV échantillonnées en 2013



« Réponse » des bioindicateurs à quelques systèmes de cultures

- ☐ Bioindicateurs discriminent le système avec les restitutions de C les plus importantes (monoculture de blé)
- Résultat identique sur l'essai systèmes de St Exupéry

Teneurs en Corg., Ntot., et 9 indicateurs sur les 5 systèmes de culture des fermes de Boigneville : valeur moyenne de deux dates de mesure (avril 2014 et avril 2015) exprimées en indice par rapport au système raisonné.

Conclusions

- ☐ Expérimentations de longue durée analytiques: support d'investigation incontournable pour évaluer les bioindicateurs
 - → Bonne discrimination des historiques PRO (dose, type de PRO), couverts (tonnage, type d'espèce), travail du sol (ancienneté du non labour)
 - → Spécificités des indicateurs (Type et tonnage de restitutions C, historique ± ancien)
 - → Lien avec fonction « fourniture N par minéralisation »
- ☐ Bioindicateurs: capacité à évaluer les systèmes de culture via leur effets sur la dynamique C et N du sol en lien avec leurs restitutions organiques
- ☐ Variabilité spatiale des bioindicateurs proche de celle des paramètres classiques, parfois supérieure. Variabilité temporelle à court terme maîtrisable si conditions de prélèvement adaptées.
- ☐ Jeu de données ne permet pas d'étudier les effets des contextes pédoclimatiques (nécessite un nombre d'analyses important et une large gamme de sols) (voir poster CELESTA-LAB)

Perspectives

Actions à poursuivre, réseau à élargir:

- ☐ Elaboration d'un référentiel loin d'être finalisée
 - → Approfondir encore effets sur essais analytiques (couverts, PRO, W du sol...)
 - → Valoriser essais systèmes bien documentés (avec évaluations multicritères)
 - → Construire des réseaux cohérents d'investigation en stratifiant les populations d'essais mobilisés selon les questions posées.
- ☐ Suivis temporels sur essais de longue durée récemment mis en place: détection précoce d'effets. (réseau SYPPRE)
- ☐ Mesure des propriétés chimiques et physiques, indispensables pour interprétation et éviter confusion d'effets.
- □ Aspects méthodologiques à approfondir (échantillonnage, stratification en non labour...).
- Mais les analyses déjà disponibles en routine sont un bon moyen d'investigation sur les expérimentations

Merci pour votre attention

