

Minéralisation de l'azote des sols (Ouest): résultats du projet "Mh"

T. Morvan, L. Beff, Y. Lambert

N. Beaudoin, B. Mary, M.Valé, R. Chaussod, B. Louis, J. Grall,

D. Hanocq,

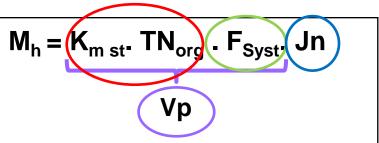
P. Germain, J.P. Cohan

Introduction

'Does the prediction of soil N mineralization hold to the search of Graal?' Ros et al., 2015

Questionnement sur la minéralisation de l'azote des matières organiques humifiées du sol (Mh):

- Contribution importante, voire principale, de cette composante à la fourniture de N par le sol
- ➤ Mauvaise qualité prédictive des modèles opérationnels

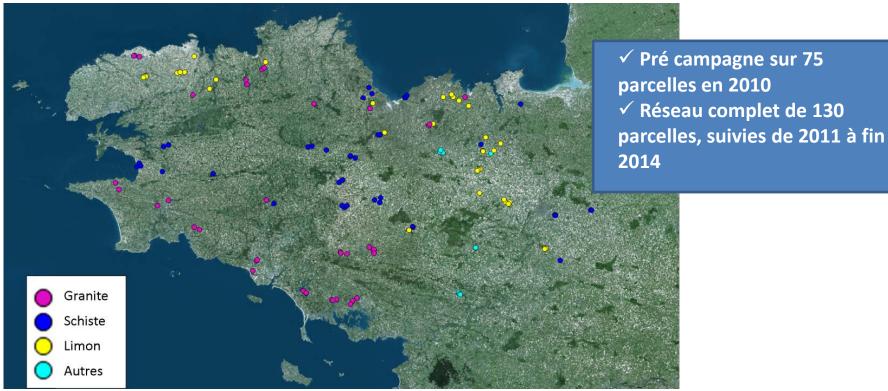


Modèle 'Comifer' de prédiction de Mh

Le formalisme adopté au niveau national (Comifer, 2013) est fondé sur la prise en compte de composantes :

- des caractéristiques des sols
- de l'histoire culturale
- du climat

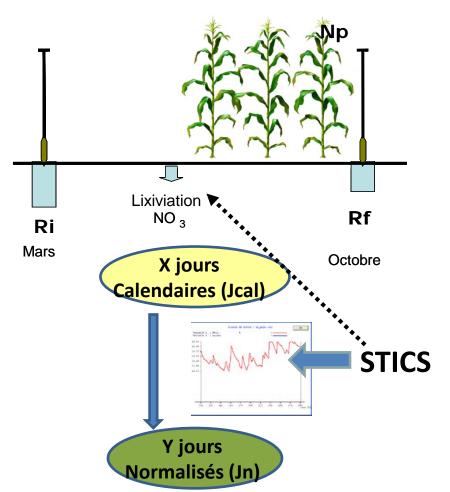
- Mauvaise qualité prédictive du modèle, avec son paramétrage actuel, pour les sols de l'Ouest
- Constat d'un manque de références
- Mise en place d'un réseau, avec pour objectifs :
 - D'établir un référentiel
 - De mieux comprendre la variabilité de la minéralisation
 - D'évaluer et de questionner le formalisme fondé sur les 3 déterminants (Sol, Histoire culturale, Climat)



Le réseau Mh (2010 – 2014)

Bonne représentativité de la diversité régionale:

- des sols : effectif équilibré entre les principaux types de matériau parental
- des historiques culturaux, très diversifiés en Bretagne
- du climat, par une bonne couverture du territoire



Démarche expérimentale

• <u>Bilan N</u> :

$$Mn = (Rf - Ri) + Np + Lix$$

$$\approx Mh$$

2010 2011 2012 2013 2014

Variable d'intérêt :

Vp = vitesse potentielle de minéralisation
 (kgN/ha/Jn)

Vp = Mh / Jn

Jn = « temps normalisé »

<u>Utilisation de STICS pour :</u>

- calculer Jn
- estimer la lixiviation (Lix)
- Qualification des données : analyse de données sur un effectif de 65 parcelles

Données sur les sols et l'historique cultural

Nombreuses mesures sur les sols :

- ➤ Mesures physiques : texture, densités apparentes et de terre fine, humidités caractéristiques...
- Analyses chimiques : teneurs en C et N, fractionnement granulométrique de la MO, pH, CEC, éléments totaux et échangeables
- 6 indicateurs de minéralisation :
- Biomasse microbienne
- Incubation anaérobie
- Fractionnement chimique :
 - extraction KCl à chaud
 - Extraction à l'eau à 100°C
 - Extraction tampon phosphate borate (APM)

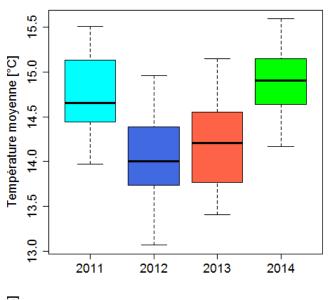
Historique cultural sur 15 ans :

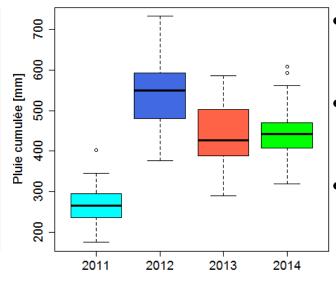
- Successions culturales
- Niveaux de rendement
- Fertilisation minérale et organique

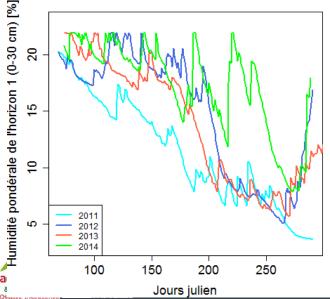
Construction d'un indicateur Système "I_Sys" sur le même formalisme que celui du coefficient Fsyst du Comifer :

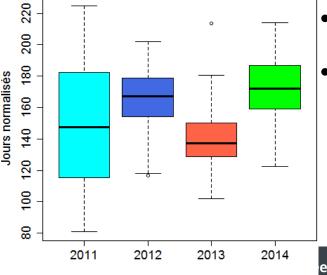
- 1 composante I_Cult déterminée par la succession culturale et le niveau de restitution de N par les cultures
- 1 composante I_PRO liée au régime d'apports organiques

$$I_Sys = I_Cult + I_PRO$$

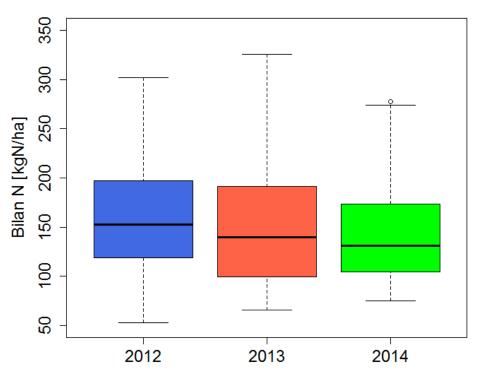







Variabililité climatique (période [Ri:Rf])

- Température moyenne plus élevée en 2011 et 2014
- Pluies cumulées beaucoup plus faible en 2011
- Déficit hydrique (ex d'une parcelle): bien marqué en 2011, et plus tardivement en 2012 et 2013
- Jn 2013 < Jn 2012 < Jn 2014
- Forte variabilité des Jn de 2011



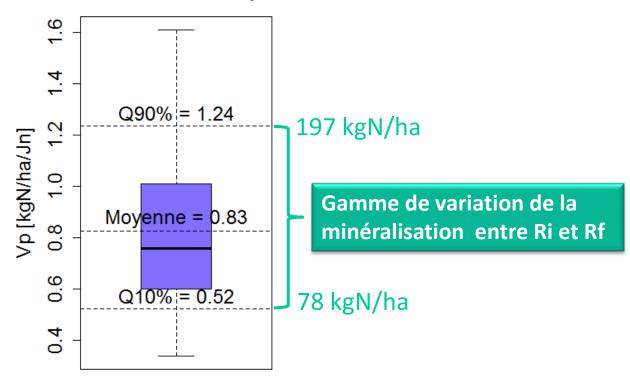
Gamme de variation des bilans N

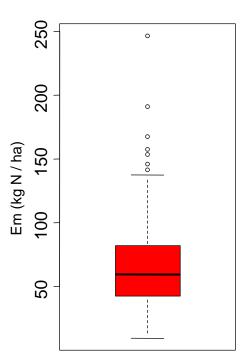
Bilans moyens et gamme de variation similaires entre les 3 années

- Composantes du bilan :
 - N absorbé par la plante : principale composante en 2014 (médiane QN_{maïs}/BilanN en 2014 = 1, 2013 = 0.7 et 2012 = 0.9)
 - Valeurs de Rf variables et parfois élevées en 2012 (Q95% = 109 kgN/ha) et 2013 (Q95% = 143 kgN/ha) par rapport à 2014 (Q95% = 84 kgN/ha)
 - Contribution non négligeable de la lixiviation, au printemps, en 2012 (moyenne = 21 kgN/ha) par rapport à 2013 (8 kgN/ha) et 2014 (6 kgN/ha)

Analyse comparée des bilans des 3 années et modification du formalisme

- Analyse comparée des bilans N sur les 3 dernières années:
 - <u>Hypothèse:</u> le bilan normalisé (Bilan_année / Jn_année) doit converger vers des valeurs proches, <u>entre années</u>, <u>pour une</u> <u>parcelle donnée</u>, si la minéralisation est décrite par le formalisme Mn ≈Mh = Vp.Jn
 - Hypothèse non vérifiée
- Ce résultat conduit à compléter le formalisme de la minéralisation par l'introduction d'un terme supplémentaire 'd'extra-minéralisation' (ex d'un flush...)





Gamme de variation de Vp et de Em

Gamme de Vp

Gamme de Em

Valé (2006) sur sol nu :

Gamme de Vp = [0.21; 1.62]

Nord France, Vp = 0.89

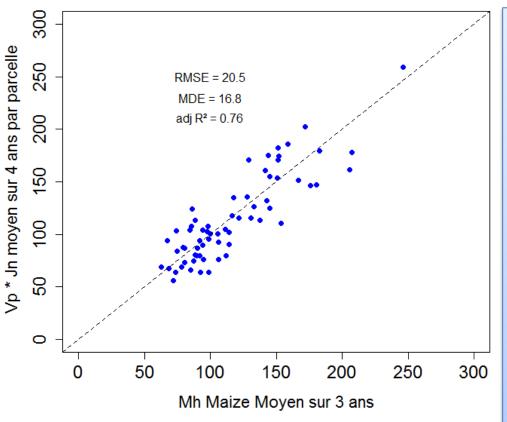
Evaluation d'un formalisme simplifié pour l'approche prédictive opérationnelle

• Objectif du prescripteur :

- Donner la meilleure prédiction possible de la minéralisation pour la période pendant laquelle l'azote fourni par le sol peut être valorisé par la culture.
 - Estimation d'un terme Mh Maize à partir du bilan entre Ri et Rf
- Donner la meilleure prédiction possible, en moyenne, sur 3 ans, 5 ans... Critère pour une évaluation opérationnelle d'un modèle :
 - moyenne sur 3 ans du flux Mh Maize: moy(Mh Maize)

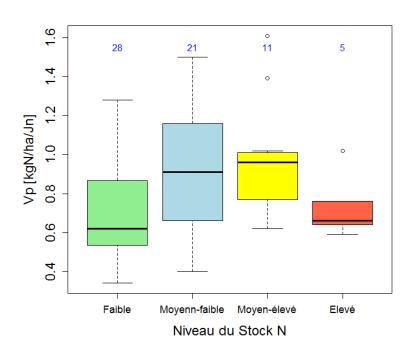
Démarche:

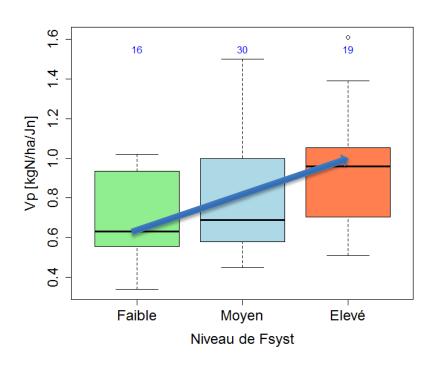
- évaluation de l'aptitude du formalisme simplifié : Mh = Vp.Jn à prédire la minéralisation moyenne Mh_Maize :
 - comparaison de ce terme moy(Mh_Maize) avec le produitVp. Jn_Maize,


avec Jn_Maize = moyenne des Jn calculés entre le 1^{er} mars et le 10 septembre, pour les années 2011 à 2014

Evaluation d'un formalisme simplifié pour l'approche prédictive opérationnelle

- Bonne prédiction de Mh_Maize (moyen sur 3 ans) avec le modèle 'Vp.Jn'
- 2 hypothèses pour l'expliquer :
 - Em se produit le plus souvent en fin de cycle et sur la période post absorption (flush automnal après la réhumectation des sols)
 - Em ne se produit pas chaque année, et se trouve donc "diluée" à l'échelle des 3 années.
- L'approche simplifiée de la minéralisation par la composante Vp.Jn peut être acceptée dans le cadre d'une approche opérationnelle.

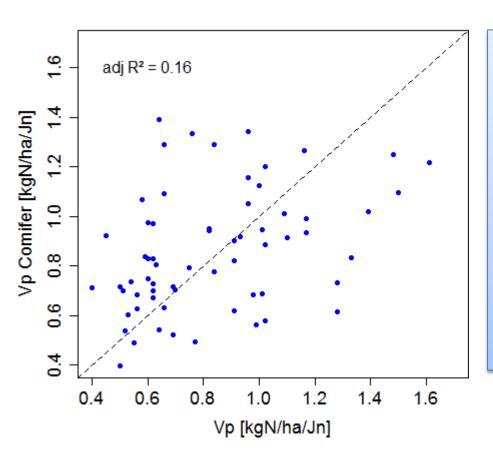




Variabilité de Vp en fonction du stock N et de l'histoire culturale

$$Vp_{Comifer} = Km_{st}$$
 . Fsyst . Stock N

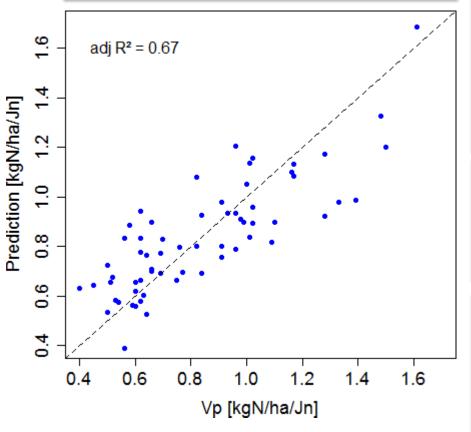
Effet significatif du Stock_N (r = 0.26, P = 0.03) et de Fsyst (r = 0.29, P = 0.02) Effet significatif de I_Sys (r = 0.41, P < 0.001)



Comparaison de Vp et "Vp Comifer"

 $Vp_{Comifer} = Km_{st}$. Fsyst . Stock N

- Mauvaise qualité prédictive du paramétrage du modèle Comifer
- Démarche de modélisation fondée sur la méthode GAM (Generalized Additive Models) :
 - Objectif d'identifier et de sélectionner les variables explicatives les plus pertinentes :
 - Sol (Stock N...)
 - Indicateur Système
 - Indicateurs de minéralisation

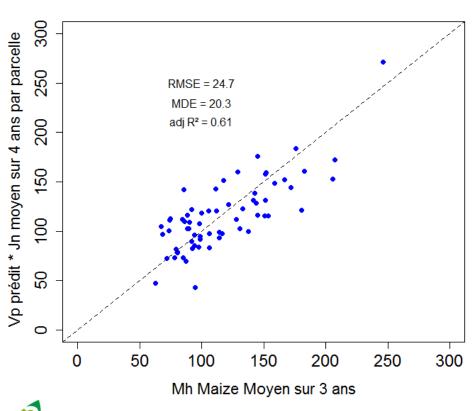


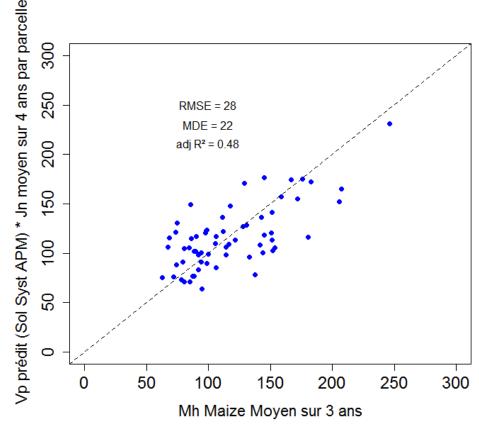
Résultat de la démarche de modélisation

Comparaison des Vp prédites par le 'meilleur' modèle avec les Vp mesurées

Plusieurs modèles :

- Le 'meilleur ' modèle explique 67% de la variabilité de Vp :
 - 2 indicateurs de minéralisation : biomasse microbienne et APM
 - la fraction particulaire de la MO
 - des propriétés du sol (texture et CEC)
 - l'indicateur Système I_Sys
- Mauvaise qualité prédictive d'un modèle renseigné par des données 'Sol' et par l_Sys (r² = 0.34)
- Modèle 'opérationnel' : renseigné par biomasse microbienne ou APM, I_Sys et variables sol facilement accessibles (texture, CEC, teneur N)
- Explique 50 % de la variabilité





Evaluation des modèles en mode prévisionne

Comparaison de la moyenne sur 3 ans de Mh_Maize avec la prédiction donnée par le 'meilleur' modèle

Comparaison de la moyenne sur 3 ans de Mh_Maize avec la prédiction donnée par le modèle 'opérationnel'

Conclusion

- L'objectif de constituer un référentiel régional sur la minéralisation est atteint
- ➤ La démarche expérimentale a permis de questionner et d'évaluer le formalisme 'Comifer'
- Confirmation que la vitesse potentielle de minéralisation est bien déterminée par l'histoire culturale et des propriétés des sols.
- La démarche de modélisation montre que la prise en compte d'indicateurs de minéralisation est nécessaire à l'élaboration de modèles de qualité prédictive correcte
 - Constat d'une imprécision relativement élevée des modèles pour la prédiction de la minéralisation. Nécessité de combiner leur utilisation à des outils de diagnostic des besoins en N de la plante en cours de développement

