

La valorisation des cendres en agriculture : l'expérience suisse

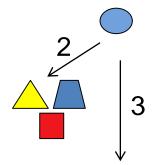
S. Sinaj, A. Maltas, H. Kebli & MP. Turpaul

18-19/11/2015

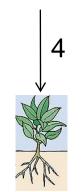
Contexte

O La demande croissante en énergie se double aujourd'hui de l'utilisation accrue de ressources renouvelables telle que la biomasse. La combustion du bois génère des cendres, qui sont actuellement mises à la décharge parce que leurs teneurs en éléments traces métalliques dépassent les seuils autorisés en Suisse pour l'épandage d'engrais de recyclage sur des terres agricoles. Cette élimination constitue une perte importante d'éléments fertilisants naturels, alors même que les quantités de cendres ne cessent de croître en conséquence de l'intérêt porté pour les énergies vertes.

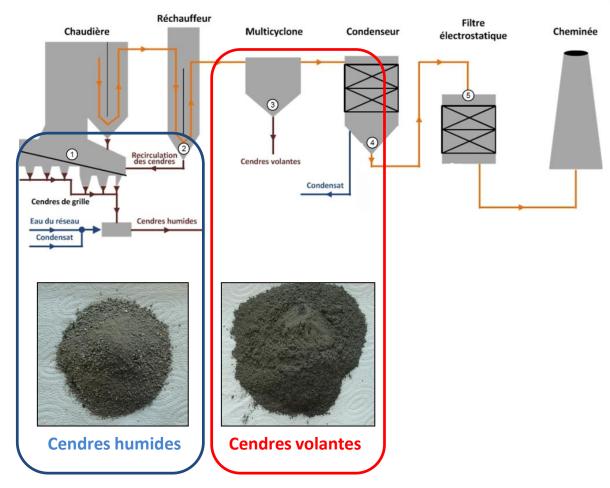
O A la demande de l'entreprise Romande Energie, l'équipe de nutrition des plantes d'Agroscope à Changins a réalisé une étude pour évaluer précisément les répercussions agronomiques et environnementales de l'utilisation agricole de ces sous-produits industriels.



Objectifs et plan



- Caractérisation des cendres sous foyer & identification de l'origine des ETM contenus dans ces cendres.
- Spéciation des macroéléments (P, K, Ca, Mg) et des ETM (Cu, Ni, Zn) contenus dans ces cendres.
- Dynamique de libération dans le sol des macroéléments et des ETM contenus dans ces cendres.
- 4. Effet des cendres sur le rendement et la qualité de la production agricole.



Légende : → Gaz de fumées → Eau du réseau & condensat → Cendres

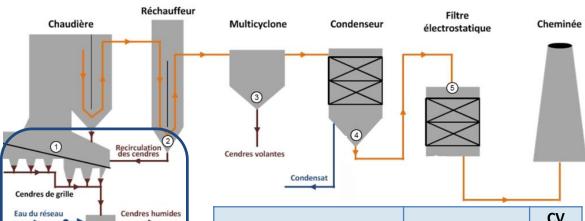
Centrale Enerbois

Ecorces & plaquettes

Condensat

Légende : - Gaz de fumées

Cendres humides


Cendres

Eau du réseau & condensat

Centrale Enerbois

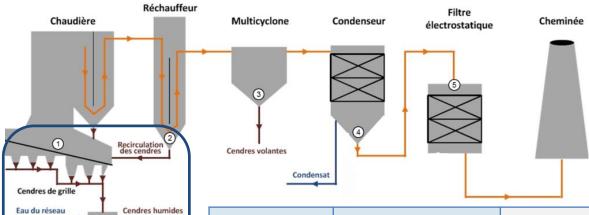
Ecorces & plaquettes

	Moyenne	(%)	
MO (g/kg MS)	15.1	55	
pH-H ₂ O	13.2	1	
Macroéléments (g/kg MS)			
Ca-total	281.3	2	
K-total	67.4	9	
Mg-total	16.5	5	
P-total	9.2	9	
S-total	0.77	9	
N-total	0.07	27	

Condensat

Légende : - Gaz de fumées

Cendres humides


Cendres

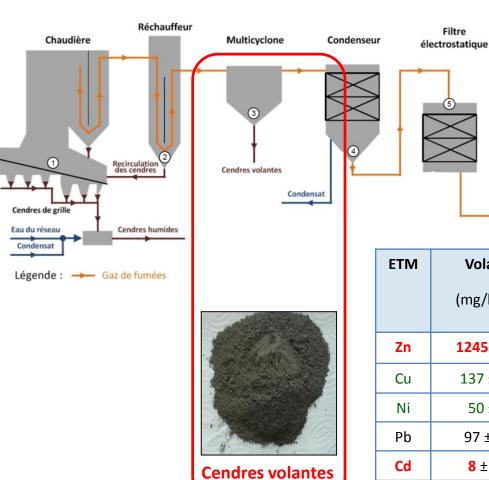
Eau du réseau & condensat

Centrale Enerbois

Ecorces & plaquettes

ETM	Teneurs totales		Seuil autorisé
	Moyenne	CV	
	(mg/ kg MS)	(%)	(mg/kg MS)
Zinc (Zn)	178	14	400
Cuivre (Cu)	110	21	100
Nickel (Ni)	52	7	30
Plomb (Pb)	21	13	120
Cadmium (Cd)	< 0.60	-	1
Mercure (Hg)	< 0.02	-	1

Cheminée

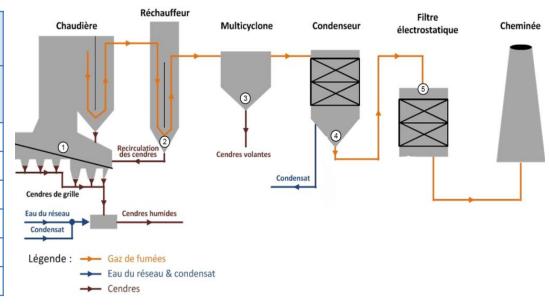

Cendres

Eau du réseau & condensat

Centrale **Enerbois**

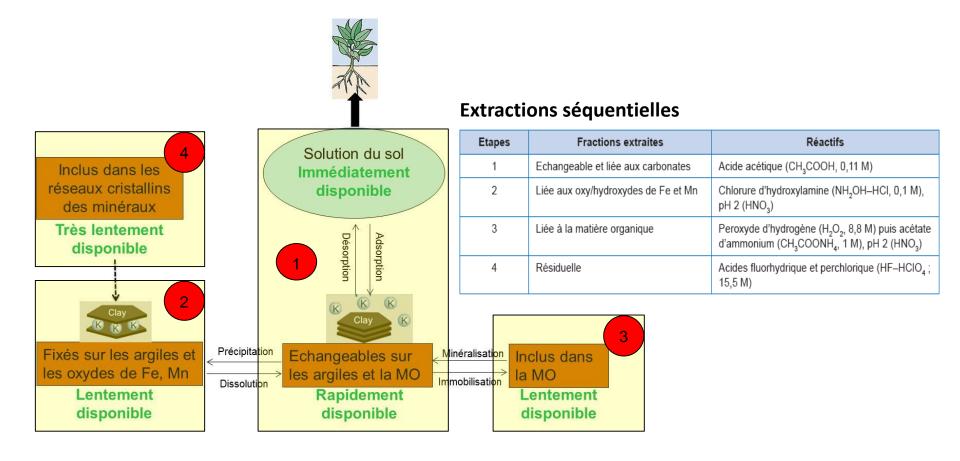
Ecorces & plaquettes

ETM	Volantes	Seuil autorisé
	(mg/kg MS)	(mg/kg MS)
Zn	1245 ± 14%	400
Cu	137 ± 27%	100
Ni	50 ± 5%	30
Pb	97 ± 62%	120
Cd	<mark>8</mark> ± 14%	1
Hg	0.19 ± 93%	1

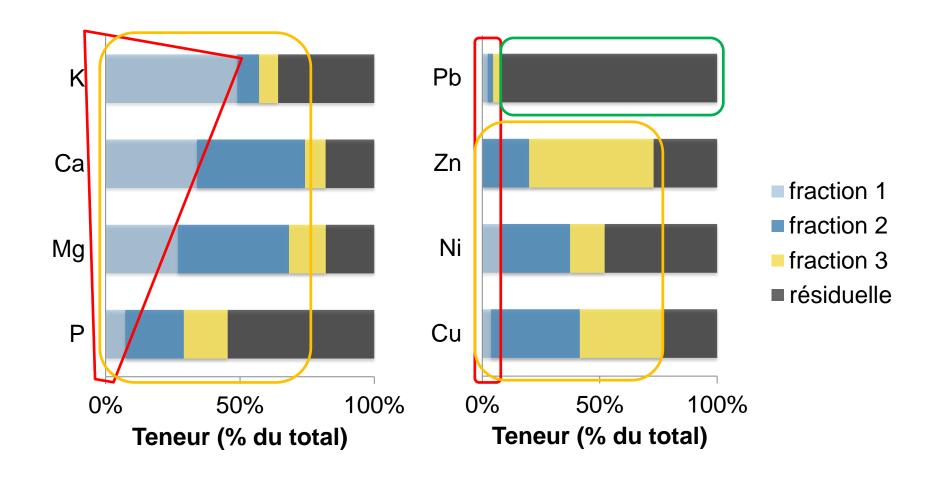

Filtre

Origine des ETM dans les cendres?

ETM	Teneurs dans les cendres (humides + volantes)		
	Réelle	Théorique	
	(mg/kg MS)	(mg/kg MS)	
Zn	609 (76)	1782 (353)	
Cu	196 (49)	282 (103)	
Ni	49 (1)	68 (9)	
Pb	52 (28)	< 25 (-)	
Cd	3.0 (0.4)	8.5 (1.9)	
Hg	< 0.07 (-)	< 0.7 (-)	

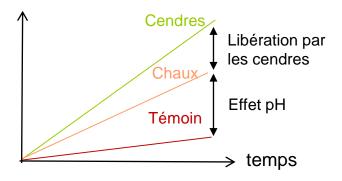

Base de calculs:

- Matériaux de combustion = 1/3 d'écorces + 2/3 de plaquettes.
- Cendres = 2.3% de la masse des matériaux de combustion.
- Cendres = 1/3 de cendres volantes + 2/3 de cendres humides.


Spéciation des macroéléments et des ETM des cendres humides

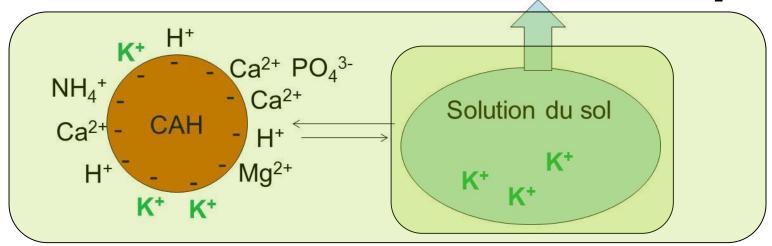
Spéciation des macroéléments et des ETM des cendres humides

Dispositif expérimental & objectifs:

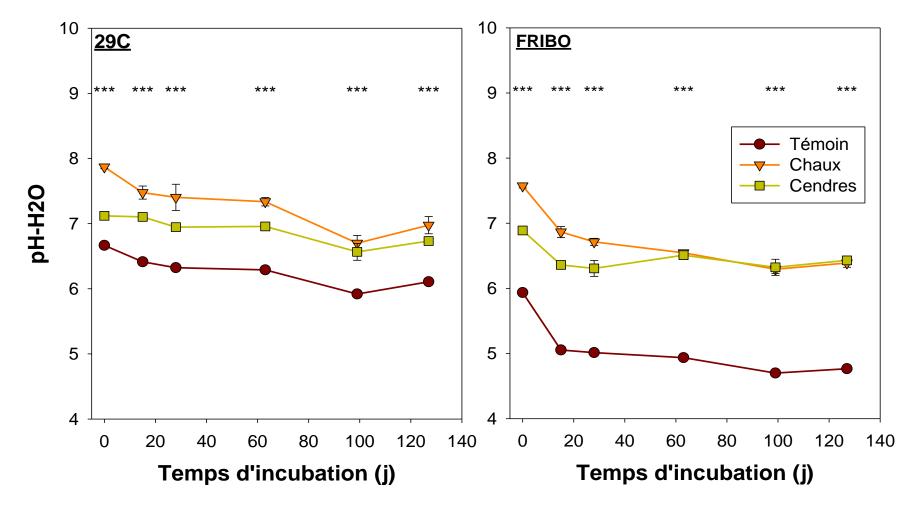

- Evolution de la disponibilité des éléments dans le sol en présence et en absence de cendres
- Effet des cendres comme amendement calcique

Sol	рН	Argile	Ca recommandée
FRIBO	5.8	15%	18 dt/ha soit
29C	6.7	54%	0.7g/kg de sol

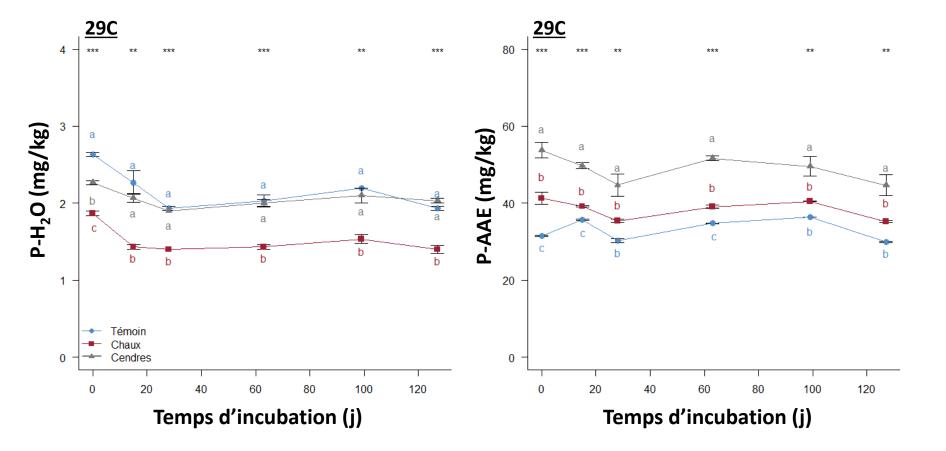
- Incubation de sol en phytotron avec 3 traitements
- 6 dates analysées du 14 mai au 18 sept/13:
 0, 15, 28, 63, 99, 127j d'incubation

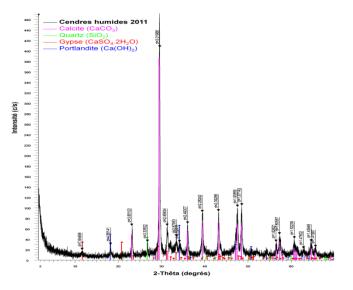

Analyses:

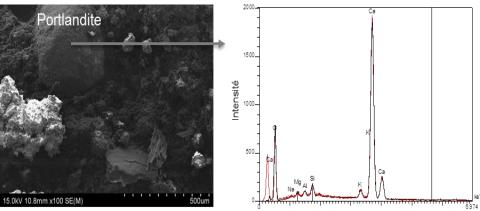
- pH et activité microbienne
- o P, K, Ca, Mg et Cu, Ni, Cd, Pb, Zn (H₂O & AAE)


Extrait à l'AAE

Extrait à l'H₂O


Effets des traitements sur le pH du sol


Effets des traitements sur le P disponible du sol



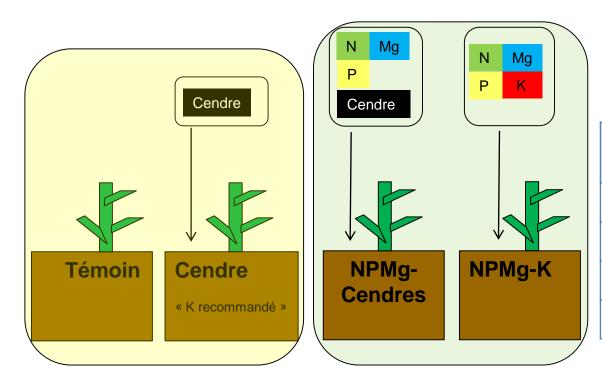
Les formes du Ca dans les cendres

Analyse par diffraction aux rayons X (DRX)

Analyse par microscopie électronique à balayage (MEB)

Chaux-vive	Cendres
CaO	Calcite (CaCO ₃)
	Portlandite Ca(OH) ₂
	Gypse (CaSO₄), Silicate de Ca

CaO + H₂O
$$\rightarrow$$
 Ca(OH)₂
Ca(OH)₂ + CO₂ \rightarrow CaCO₃ + H₂O

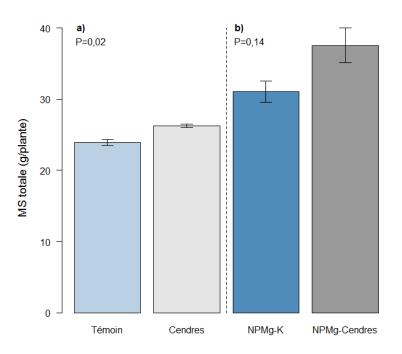


Effets sur la production agricole

Effets des cendres humides utilisées comme fertilisant K sur tournesol, culture très exigeante en K

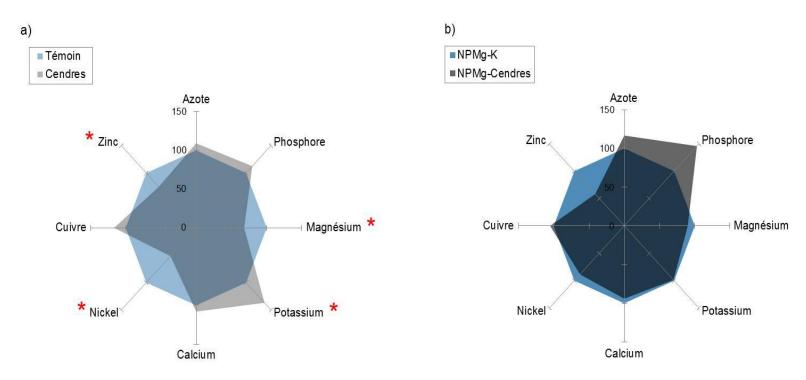
50'000 plantes/ha

	Dose kg/ha	Dose g/plante
N	60	1.2
Р	21	0.4
Mg	55	1.1
K	196	3.9



Effets sur la production agricole

MS totale du tournesol à la récolte en conditions (a) limitantes et (b) non limitantes en NPMgK.



Effets sur la production agricole

Absorption des minéraux par le tournesol en conditions (a) limitantes et (b) non limitantes en NPMgK.

Les résultats sont exprimés en valeur relative par rapport aux traitements sans cendres (traitements «témoin» et «NPMg-K» respectivement pour la figure a et b). Les astérisques indiquent des différences significatives entre les deux traitements au seuil de 5% selon le test t.

Conclusions 1/2

Les cendres <u>humides</u> de la centrale Enerbois:

- Représentent un amendement calcique moins agressif que la chaux
- Représentent un très bon engrais potassique enrichi en P, Mg et «oligoéléments» avec une efficience du K équivalente à celle du KCl
- Contiennent également du Cu, Ni, Zn et Pb mais sous une forme peu disponible voir indisponible
- Les ETM semblent provenir en grande partie du bois utilisé

Conclusions 2/2

L'application des cendres (par rapport à un témoin sans apport):

- Diminue la quantité disponible de Ni et de Zn dans le sol et réduit en conséquent leurs teneurs dans le tournesol
- → Pas d'effet négatif à court terme sur la contamination du sol et de la plante par les ETM
- → Mais la question des effets à long terme se pose toujours car des quantités non négligeables de Cu, Ni et Zn peu disponibles, mais potentiellement disponibles, sont apportées.

Mars 2016: Soumission du projet «Mise au point d'engrais à base de cendres».

Merci de votre attention

