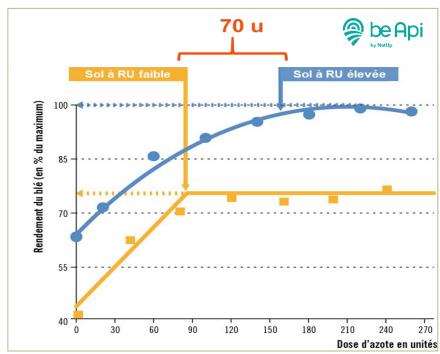
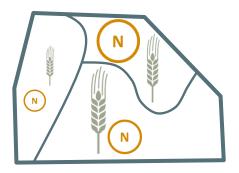
15^è RENCONTRES DE LA FERTILISATION RAISONNÉE ET DE L'ANALYSE

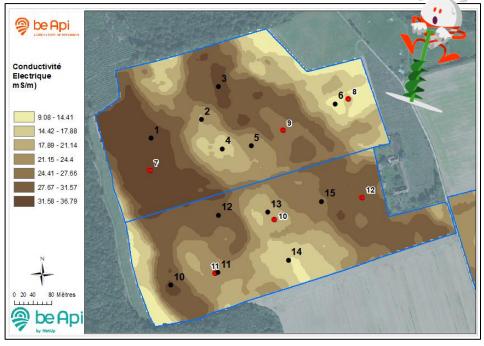
Modélisation et spatialisation des reliquats d'azote sortie hiver



Intérêt pour la modulation intra-parcellaire de la fertilisation azotée


Les enjeux de la modulation de la fertilisation azotée

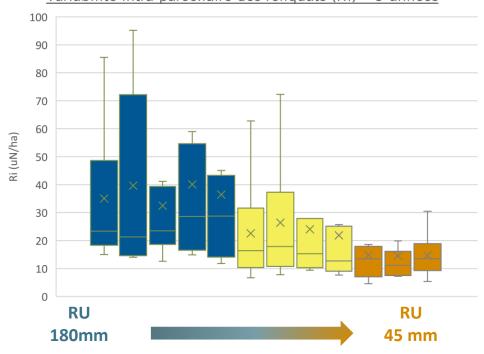
Essai courbes de réponse - Natup, 2015


- **Variation des doses optimales d'azote sur une même parcelle**
- Différents types de courbe selon les contextes agro-climatiques
- Modulation permet d'améliorer l'efficience des apports azotés
 - → Spatialisation Objectifs de production + Fournitures du sol

Choix d'une parcelle d'étude : 9 ans de suivi

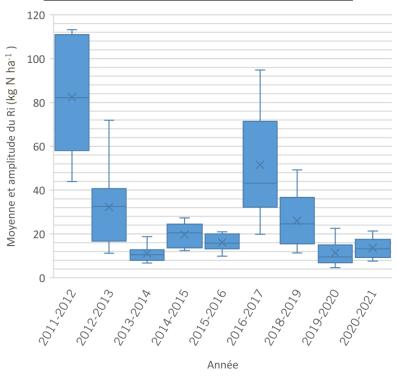
- 2 parcelles culturales avec rotation Colza-Blé-Blé-Lin-Blé-Blé
- Carte de conductivité électrique et interprétation de 6 profils pédologiques
- Variabilité des types de sol et des caractéristiques hydriques (RU entre 45 et 180 mm)

- Géolocalisation de 12 points de mesure de Reliquats Sortie Hiver (3 Horizons / 15 carottages élémentaires / échantillons frais).
- Échantillons analysés par 🏸 proxilabo
- Pluviométrie hivernale : entre 216mm et 330 mm


Mesures de reliquatsProfils pédologiques

Résultats - Variabilité des Reliquats Sortie Hiver (Ri)

- Effet hautement significatif du type de sol (Réserve Utile) sur la valeur des Ri
- ✓ Jusqu'à 20-30 kg N ha⁻¹
- Pas d'interaction Type de Sol (RU) / Année (Pluviométrie)


 Tendances similaires interannuelles
- Des Ri inférieurs aux références régionales (74 situations / 96)
 Jusqu'à 35 kg N ha-1 d'écart

Résultats - Variabilité des Reliquats Sortie Hiver (Ri)

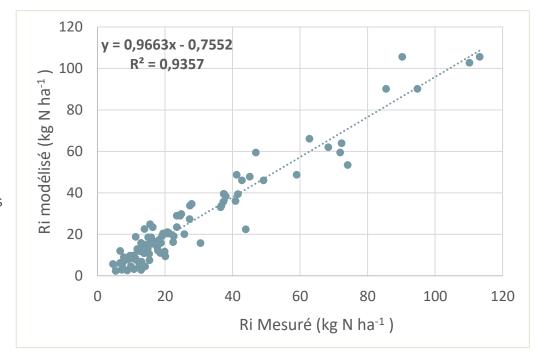
Reliquats moyens par année et type de sol (kg N ha-1)

Année	Sol profond	Sol intermédiaire	Sol superficiel	Moyenne
2011-2012	95	59		82
2012-2013	46	34	20	32
2013-2014	14	8	7	11
2014-2015	27	14	14	20
2015-2016	21	14	9	16
2016-2017	69	38	31	52
2018-2019	35	18	15	26
2019-2020	16	8	5	11
2020-2021	17	11	11	14
Moyenne	36	24	15	

- **9**
 - Effet interannuel hautement significatif
- Effet climatique
- Effet cultural
- ✓ Effet pouvant atteindre 60 kg N ha-1

Besoin de modéliser annuellement la variabilité intra-parcellaire du Ri

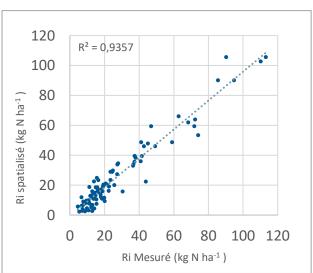
Résultats - Modélisation des Reliquats d'Azote

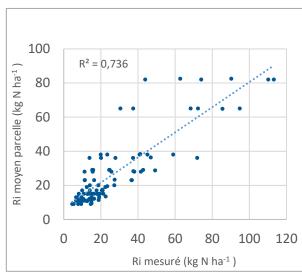


$Ri_{zone} = Ri_{prof}$. (1-%Less z_{zone})/(1-%Less p_{rof})

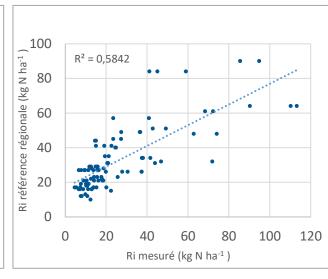
- Ri prof issu d'une mesure au champ
- % Lessivage calculé par l'outil Epiclès
- Modèle de Burns (BURNS I.G., 1974)
- Calcul de la lame d'eau drainante
 - a) Pluviométrie hivernale (01/09 31/01)
 - b) Caractéristiques pédologiques et agronomiques

Comparaison reliquats observés/modélisés

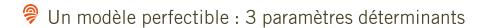

Résultats : Qualité et intérêt de la modélisation



3 scénarios étudiés : Intérêt de la modélisation


Modèle de spatialisation

Ri moyen à la parcelle


Références régionales

Résultats : Qualité et intérêt de la modélisation

Culture	Blé (63)	Colza (15)	Lin (18)	Toutes Cultures (96)
R ²	0.94	0.69	0.89	0,94
Pente	0.97	1.1	0.93	0,97
Ecart absolu (min-max)	0 - 15	0-10	0 - 21	0 - 21

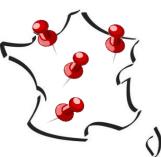
Pluviométrie	Faible (30)	Moyen (24)	Elevé (42)	Toutes pluviométries (96)
R²	0.92	0.74	0.93	0.94
Pente	0.97	1.13	0.95	0.97
Ecart absolu (min-max)	0-15	0-10	0-21	0-21

+ un effet Type de sol

- Surestimation en lin (Hypothèse : impact de l'interculture ?)
- Sous-estimation en colza (Hypothèse : différenciation de la biomasse selon les types de sol ?)

Conclusion : Enseignements et Perspectives

L'utilisation d'un Ri moyen à la parcelle peut aboutir à une erreur de 40 kg N ha-1



Et demain ...

Acquisition de références sur des secteurs pédoclimatiques variés

