

APPROCHE GLOBALE DU BILAN CARBONE DES AMENDEMENTS MINÉRAUX BASIQUES

PRESENTATION DES TRAVAUX DE LA SECTION AMB DE L'UNIFA

GT SAB du COMIFER – le 30 novembre 2021

ENGAGÉS

pour préserver l'environnement et mieux nourrir les hommes!

INTRODUCTION

- L'UNIFA représente des producteurs de tous types de matières fertilisantes pour la plante et le sol.
- Zoom sur les AMB : ont pour rôle la désacidification du sol pour en améliorer la structure et les fonctions biologiques et chimiques.
- Retour sur une étude présentée aux Rencontres COMIFER-**GEMAS 2021**

Approche globale du bilan carbone

Dans son dernier rapport, paru le 30 juin dernier, le Haut-Conseil pour le Climat (HCC) constate une « amélioration mitigée » du rythme de réduction

Principalment via ses émissions de métitane et de arotoxyde d'aroto, Pagriculture représente 19 % des émissions totales de GES de la France. Son poids dans les emissions totales a augmenté, alors que la Stratécie Nationale Bas Carbone n°2 vise une réduction de 27 % des émissions du secteu

Selon Hénault et al. [4], le pH du sol est un des leviers principaux de réduction des émissions de NyO. Attender un ple étalogique de NyO apartir comme une stratégie efficace de diministion des émissions de GES sur l'exploitation.

Ses travaux sont repris dans le Label Bas Carbone Grandes Caltures avec le coefficient

Solon les decreires en fices disconibles de la RDAT 35% des sols français mesurés son

Il apparaissait nécessaire de réaliser le bilan global des GES lié à l'utilisation d'un

- Pratiques verturuses d'un chaulage d'entretien sur un sol à pH > 6,8 : 1000 VN sur 4 ans sur terres cultivées ; 600 VN sur 4 ans sur araines perma:
- SAU France = 60% de grandes cultures es cultures industrielles = 40% de proiries permanentes fertilisées souver Agrees, 2008

- Frocuction de l'AME : a production érret du CD, par séchage, broyage ou ou ssan.
- · Transport Jusqu'à l'agriculteur et épandage : utilisation de carburar:
- · Une lois épanda, IAMS libère du CO₂ par décarbonstation totale ou résidue le du l'ait de

- 1168 Ke

- Evitement des émissions de N.O. en esCO.
- En passant d'un pH de 6,4 à 6,8 → réduction de 90% des émissions de N,O au sol.
- Le rééquilibrage chimique et structurel du soi par le chaulage permet une réduction des émissions de N,O dan Fatmosphère de 1168 kg epCD /t VN/ha.
- · Séquestration de CO₃ par stockage de carbone
- A of l ≥ 6.8 → augmentation de la production de biomasse, rendement plus élevé. \$1.
- La quantité de CO₂ de l'air diminue par fixation de carbone par la plante (213 kg egCO₂/t VN/ha), puis stockage dans le

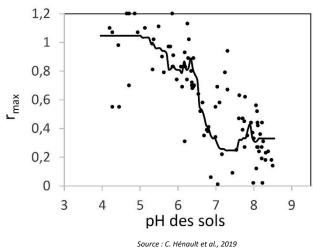
Cette étude fait le bilan complet des émissions de GES liées à la totalité du cycle de vie des AMB, de

En limitant les émissions de N.O et en séquestrant alus de carbone, les AMB évitent l'émission de

L'étude permet de conclure que l'utilisation d'AMB est bénéfique d'un point de sur

environnemental et agranomique, en réhaussant le pH du sei, en le structurant, et en assurant le

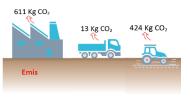
Tous ces éléments permettent de définir un pH agroécologique de 6,8.



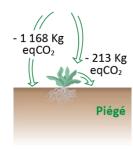
Source: Poster Rencontres COMIFER-GEMAS 2021, section AMB UNIFA

CONTEXTE DE L'ETUDE

- Article scientifique **C. Hénault et al. 2019** :
 - L'augmentation du pH désinhibe des bactéries de la dénitrification : $N_2O \rightarrow N_2$
 - Virage à pH [6,4 6,8]
- En partant de ce constat :
 - L'AMB pourrait compenser les émissions GES à la production lors de son utilisation à la parcelle ?
 - Dans quelle mesure ?
- Cette étude peut apporter des réponses face aux enjeux de diminution des émissions GES et de stockage de carbone :
 - Label Bas Carbone
 - Qualité de l'air, etc.



METHODOLOGIE


- Une <u>analyse du cycle de vie</u> de l'AMB.
- Etude de l'ensemble des postes pour le bilan :

Source : Newsletter Référence Agro, section AMB UNIFA

- Réduction de N₂O Sol
- Fixation de CO₂ Sol

- Production
- Transport/Epandage
- Emissions de CO₂ Sol

Source : Newsletter Référence Agro, section AMB UNIFA

 Au global, on regardera combien d'émissions la production d'1 tonne de VN génère, et combien d'émissions l'utilisation de cette même tonne de VN compense.

PRODUCTION

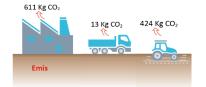
- On calcule les émissions à la production pour les 2 types d'AMB : CaO et CaCO₃
- Les émissions de CO₂ à la production sont dues à :
 - l'extraction
 - le séchage
 - le broyage

Produit AMB	VN du produit	kg de CO ₂ /t de produit	kg de CO ₂ /t de VN	
chaux vive calcique	93	1031	1109	
Amendement calcaire séché pulvérisé	55	62	113	

TRANSPORT/EPANDAGE

- Pour le transport de l'usine au champ :
 - En moyenne, 100km parcourus par camion citerne de 28T
- Pour l'épandage :
 - Appareil à rampe de 12m soit 0,83 km/ha
 - Un épandage tous les 4 ans : 1000 VN/ha en grande culture / 600 VN/ha en prairie permanente
 - Consommation épandeur : 20 l/h

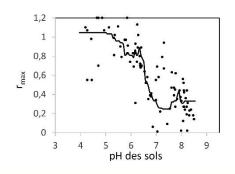
Produit AMB	VN du produit	kg de CO ₂ /t de VN (transport)	kg de CO₂/t de VN (épandage)	kg de CO₂/t de VN
chaux vive calcique	93	10	11	21
Amendement calcaire séché pulvérisé	55	17	15	32


EMISSIONS DE CO₂ - SOL

- Après épandage, le C contenu dans le CaCO₃ est émis sous forme de CO₂ (1*CO₂ pour 1*CaCO₃)
 - Signe d'une utilisation efficace du produit
- La chaux vive CaO n'émet pas de CO₂ (sauf le CO₂ lié à la décomposition du carbonate résiduel)

Produit AMB	VN du produit	kg de CO ₂ /t de produit	kg de CO₂/t de VN	
chaux vive calcique	93	35	38	
Amendement calcaire séché pulvérisé	55	430	782	

BILAN emissions



Produit AMB	Emissions directes (kg de CO ₂ /t de VN)					
	Production	Transport- épandage	Emissions au sol	Total		
chaux vive calcique	1109	21	38	1167		
Amendement calcaire séché pulvérisé	ire séché 113 32		782	927		

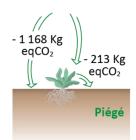
RÉDUCTION DE N₂O – SOL

- Définition des quantités d'azote apportées par fertilisation minérale + organique par ha de SAU :
 - 60% de SAU en grandes cultures + 40% de SAU en prairies permanentes (=25 000 ha)
- Conversion en quantité de N₂O émis après fertilisation azotée :
 - Facteur d'émission N-N₂O (moyenne mondiale) : 1%
 - Conversion N en N₂O : x1,57
- Pratique du chaulage : 1 épandage tous les 4 ans :
 - 1000 kg VN/ha l'année 1 en grandes cultures (pour 4 ans)
 - 600 kg VN/ha l'année 1 en prairies permanentes (pour 4 ans)
- 2 scénarios de chaulage :
 - Situation transitoire : de pH 6,8 l'année 1 à pH 6,4 l'année 4
 - Rythme de croisière : pH supérieur à 6,8 sur les 4 ans (abattement de 50% des émissions de N2O chaque année)

RÉDUCTION DE N₂O – SOL

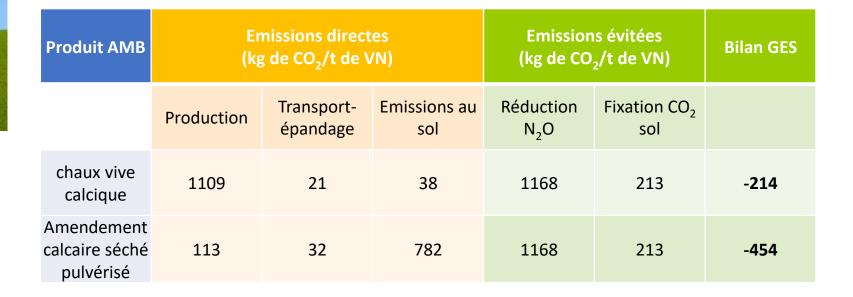
		proposé par Hén	ault et al 2019		
1ere année		Zàme année	Zàme année	Aème année	5ème année
tere annee	1 000	+	n () (1 00
		†	0 6.9	6.8	
		÷		- i	
		1			
	299,7	299,	7 299,7	7 299,7	299,
	168,1	168,	1 168,1	168,1	168,
	299,7	7			
	168,1				
					^
N2O évité en kg eqCO2/ha		kg VN/ha	BILAN N2O/T VN		
	1 199	1 00	0 1 199		
	672	60	0 1 121	Ļ	
<u> </u>			Υ	1	
		<u> </u>			
Milliers d'ha		¥		·	
		÷		- i	
		+		- i	
	25045	1,	0	1168,2	Produit
	1ere année N2O évité en kg eqCO2/ha Surface Milliers d'ha	1 000 7,1 50% 299,7 168,1 299,7 168,3 109,7 168,3 N2O évité en kg eqCO2/ha 1199 672 Surface Milliers d'ha 15245 9800	1ere année Zème année 1 000 7,1 7, 50% 50% 50% 299,7 299, 168,1 168, 299,7 168,1 168,1 168,1 N2O évité en kg eqCO2/ha kg VN/ha 1199 1 00 672 60 60 Surface Surface Surface Milliers d'ha % 15245 0, 9800 0, 9800 0,	1000	1ere année

Produit AMB	VN du produit	N ₂ O évité /ha	kg eqCO₂ évités/t de VN
chaux vive calcique	93	4,40	1168
Amendement calcaire séché pulvérisé	55	4,40	1168

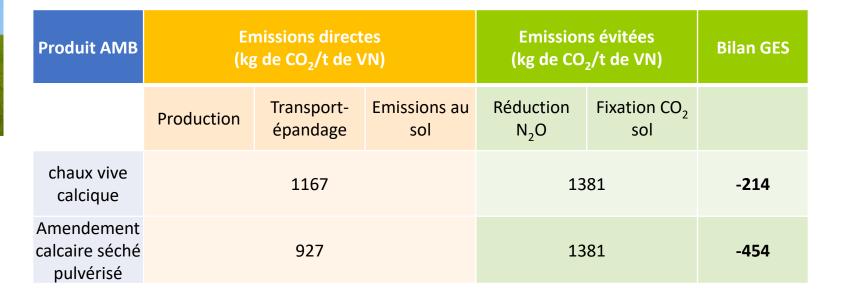

FIXATION DE CO₂ - SOL

- L'augmentation du pH par chaulage améliore l'activité bactérienne :
 - Meilleure mise à disposition des nutriments
 - Gain de biomasse soit augmentation de la fixation du CO₂ de l'air (cycle de Calvin)
 - → Culture = plus grand puits de C
- Une part de la biomasse produite retourne au sol une faible proportion est fixée durablement dans le sol (20 ans) :
 - 2,5% pour les grandes cultures
 - 5% pour les prairies permanentes

Produit AMB	VN du produit	Kg de C fixé /ha	kg de CO ₂ fixé /t de VN
chaux vive calcique	93	16,5	213
Amendement calcaire séché pulvérisé	55	16,5	213

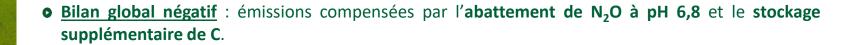

BILAN Réductions

Produit AMB	Emissions évitées (kg de CO ₂ /t de VN)					
	Réduction N ₂ O	Fixation CO ₂ sol	TOTAL			
chaux vive calcique	1168	213	1381			
Amendement calcaire séché pulvérisé	1168	213	1381			



BILAN

BILAN



BILAN

Produit AMB	Emissions directes (kg de CO ₂ /t de VN)			Emissions évitées (kg de CO ₂ /t de VN)		Bilan GES
	Production	Transport- épandage	Emissions au sol	Réduction N ₂ O	Fixation CO ₂ sol	
AMB	1047		13	81	-334	

CONCLUSION

- La pratique du chaulage et l'objectif de pH 6,8 sont un levier à porter dans le cadre de nos politiques publiques et auprès des agriculteurs/trices.
 - Label Bas Carbone
 - Qualité de l'air

Merci pour votre attention!

pour préserver l'environnement et mieux nourrir les hommes!