# Can we improve the efficiency of biostimulants for nitrogen fertilization by studying their biological effects ?

Justine Broutin<sup>1,2</sup>, Isabelle Jéhanno<sup>1</sup>, Gilles Clément<sup>1</sup>, Anne Marmagne<sup>1</sup>, Stephanie Pateyron<sup>4</sup>, Anne-Sophie Leprince <sup>1,3</sup>, Benjamin Ourliac <sup>2</sup>, Christian Meyer<sup>1</sup>

In the current situation, agriculture meets demand to feed the growing world population in a changing climate. The most used fertilizers are composed of inorganic nitrogen (N) which is an essential macro-element for plants. For most of them, N is taken up as inorganic N source from the soil (nitrate or ammonium) but their availability can largely vary in soils. However, N production and addition in fields have a strong polluting impact on the environment. There is thus an urgent need for strategies allowing a better N use efficiency (NUE) in crops. The use of biostimulants like protein hydrolysates (PH) is one of them. They have been developed to improve nutrient use efficiency, storage and remobilisation of nutrient elements in crops along with resistance to stresses<sup>1, 2</sup>. This project aims to better understand how a PH, which contain amino-acids, can improve N fertilization.

All experiments were carried out using Arabidopsis plants grown on vertical plates in vitro with 5mM NO<sub>3</sub><sup>-</sup> and 1% sucrose. Root growth was measured after 12 days in culture and omics analyses were performed after 14 days in culture. PH is manufactured by the Fertinagro company.



- PH solution (mg/L)

## Transcriptomic analysis

NO<sub>3</sub><sup>-</sup> nutrition Effect of  $NO_3^-$  supply: 5mM Stimulating effect of PH at

Number of genes differencially expressed with

Fold change of metabolite concentrations normalized by the mean of all samples

12.5 -



all NO<sub>3</sub>-concentrations but stronger effect of PH in nitrogen deficiency

 $\rightarrow$  Next: metabolomic and transcriptomic analysis



- Effect of salt stress: Stimulating effect of PH is maintained in moderate NaCl stress
- $\rightarrow$  Next: characterization of abiotic stress response with PH treatment

ANOVA test (16<n<20 seedlings per condition). Letters indicate a significant difference with the control condition.

PH treatment compared to control condition



1254 up-regulated

1287 down-regulated

#### **Amino acid transporters**

role ID name UmamiT46 nodulin MtN21-like transporter family protein AT3G28070 JmamiT47 nodulin MtN21-like transporter family protein JmamiT18 nodulin MtN21-like transporter family protein JmamiT05 nodulin MtN21-like transporter family. AT5G407 transporter aa UmamiT33 nodulin MtN21-like transporter family protein AT4G28040 -0.5 0 0.5 1 Log2(FoldChange)



|                                        | ID         | name      | role                     |  |
|----------------------------------------|------------|-----------|--------------------------|--|
|                                        | AT5G26170  | WRKY50    | Jasmonic acid pathway    |  |
|                                        | AT2G34600  | JAZ7      | Jasmonic acid pathway    |  |
|                                        | AT4G23810  | WRKY53    | member of WRKY TF        |  |
|                                        | AT1G72450  | JAZ6      | Jasmonic acid pathway    |  |
|                                        | AT5G 42650 | AOS       | Jasmonic acid pathway    |  |
|                                        | AT1G75040  | PR5       | Salicylic acid pathway   |  |
|                                        | AT1G19180  | JAZ1      | Jasmonic acid pathway    |  |
|                                        | AT3G25770  | AOC2      | Jasmonic acid pathway    |  |
|                                        | AT2G43590  | AT2G43590 | PR-3 like gene           |  |
|                                        | AT4G19810  | CHI-C     | Chitinase                |  |
|                                        | AT1G32640  | ATMYC2    | MYC activator            |  |
|                                        | AT1G70700  | JAZ9      | Jasmonic acid pathway    |  |
|                                        | At2g03760  | ATSOT1    | Salicylic acid pathway   |  |
|                                        | AT2G43570  | AT2G43570 | Putative basic chitinase |  |
|                                        | AT3G01970  | WRKY45    | member of WRKY TF        |  |
|                                        | AT5G44420  | PDF1.2a   | Jasmonic acid pathway    |  |
| -1.5 -1 -0.5 0 0.5<br>Log2(FoldChange) |            |           |                          |  |

- Some amino acid transporters are differentially regulated by PH
- **Down-regulation of NO<sub>3</sub><sup>-</sup>** HATS transporters
- $\rightarrow$  Next: measurement of  $NO_3^-$  uptake
- PH influences expression of biotic stress markers
- $\rightarrow$  Next: characterization of biotic stress response with PH treatment

## Screening of Arabidopsis mutants hypersensitive or resistant to PH



- 1. Institut Jean-Pierre Bourgin (IJPB) INRAE AgroParis- Tech University Paris-Saclay, Route St Cyr, 78000 Versailles, France (JB\_PhD Student)
- 2. Fertinagro France, 1935 Rte de la Gare, 40290 Misson, France
- 3. UMR 927, Faculté des Sciences et d'Ingénierie, Sorbonne Université, 4 Place Jussieu, 75252 Paris, France
- 4. Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, Université Paris-Saclay, Université Evry, 91405, Orsay, France

### <u>References:</u>

Colla G, et al. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Front Plant Sci. 8:2202. (2017) https://doi.org:10.3389/fpls.2017.02202

Trevisan S, et al. Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development. Environmental and Experimental Botany. (2011) https://doi.org/10.1016/j.envexpbot.2011.04.017





Sciences du végétal : du gène à l'écosystème







