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European Fertilizer Industry Ambitions

2026 2040 2050
Decarbonisation masterplan 70% GHG emission reduction Climate-neutral by 2050
by 2026 by 2040

Source: Roadmap for the European Fertilizer Industry



About Fertilizers Europe

Fertilizers Europe represents the interests of
the majority of mineral fertilizer
manufacturers in the European Union.

- 16 fertilizer manufacturers

- 9 national fertilizer associations.



Overview

<

* Roadmap 2050
- Technologies
- Pathways
- Archetypes

« Role of ammonia in the transition

 Whatelse?



Traditional Ammonia Production
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Nitrogen technology evolution
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of N- fertilizers

[
: CO,(feedstock)
| Urea production Urea
. |
The roadmap focuses on ammonia |
production from hydrogen and nitrogen, :
including the energy-intensive |
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Figure 1: Overview of the conventional production of N-fertilizers

Source: Roadmap for the European Fertilizer Industry



Low Carbon Ammonia Production

Low-carbon and renewable
ammonia production technologies

ccu/cCs TECHNOLOGY

CCU Technology captures
CO, and utilises it in other
downstream processes.

2 |
AIR : CCS Technology captures and
! stores CO, emissions from
ammonia production.
I H
=D
I . N

cCs
Source: Roadmap for the European Fertilizer Industry
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Cost of Ammonia Production based on gas

Ammonia cost based on conventional and low-carbon based Ammonia cost comparing all hydrogen options (in EUR/t NH,) in
hydrogen (In EURA NH,4) the near term [around 2030)1
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Source: Roadmap for the European Fertilizer Industry
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Renewable Ammonia Production

ELECTROLYSIS OR ALTERNATIVE

SOURCES OF HYDROGEN
produced via
electrolysis or alternative sources
of hydrogen.
=D CO, is avoided by replacing
2>° natural gas with green hydrogen
...................... -
~» BIO-METHANE
co,
AR Fossil CO, is avoided thanks to
—D the utilisation of bio-methane
2° instead of natural gas.
CO,) ----  meeemee- .,
it - o o
- [t — — &
gp9 °f oo MY
BIO-METHANE LOW-CARBON LOW-CA
\= rope Source: Roadmap for the European Fertilizer Industry - G
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Cost of Ammonia Production based on electricity

Ammonia cost based on renewable and nuclearelectricity (in

EURIt NH;)?
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Pathaways to a decarbonised future

Source: Roadmap for the European Fertilizer Industry
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Wind potential in the EU
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— HrOpPe Source: Roadmap for the European Fertilizer Industry
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Which pathaway?

Technology
neutral pathway

Technology
neutral pathway

| Fertilizers
Europe -
ope Source: Roadmap for the European Fertilizer Industry




Transition pathaway for technology neutral trajectory 1

—_— ~
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Al: A3: Al: A3:
Methane Methane & Methane Methane &
Hydrogen Hydrogen

N

A4: A2: A4: A2:
Limited Hydrogen Limited Hydrogen
possibilities possibilities

- Aplantin archetype 1 has access to biomethane and/or CO2 infrastructure
- Aplantin archetype 2 has access to hydrogen, either from abundant competitively priced
renewable electricity, or from a hydrogen pipeline grid.

Source: Roadmap for the European Fertilizer Industry

Al:
Methane

A3:
Methane &
Hydrogen

A4: A2:

Limited Hydrogen
possibilities
Legend
I ccs
Energy efficiency SMR

[ Biomethane/biogas
Electricity-based hydrogen
I Remaining CO, from fossil SMR
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Cost of technological transition

electrolysers only

a hydrogen pipeline network

for offshore wind parks

Source: Roadmap for the European Fertilizer Industry
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Ammonia can be imported but creates dependency

Cost of imported green ammonia (near-term)

Cost of imported green ammonia (long-term)

_ ) i EU (range) Production
Green ammonia cost (near term) in EUR/t NH3
I EU (best) Transport
1,000 - 894
800 - 703 701 Cost range
615 612 European
600 - production
400 543 504 631 593
200 -
0 - 72 108 | 72 108
Europe UAE Australia UAE Australia
Existing New

ammonia plant ammonia plant

Source: Roadmap for the European Fertilizer Industry

Green ammonia cost (long term) in EUR/t NH3 EU (range)
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Not just fertilizers

Power and heat generation

Replacing coal and natural gas in both baseload applications and peaker plants to
provide stability in the grid with a high penetration of intermittent solar and wind
power.

_ High temperature heat in industrial processes §0'5 ]
Ammonia as As for example the German company Aurubis is currently exploring the ¥ Batteries
energy carrier use of ammonia for the production of copper in the anode furnace 63
displacing natural gas.1 3 Flow
0 batteries Hydrogen
0.25
LOHC

Shipping fuel \ ;l Amonia
Ammonia, next to renewable methanol, is proposed to replace heavy fuel

oil and LNG as a marine fuel for international shipping. .

T | T I (T
1 10 100 1000 10000
Storage time, hrs

@ As atransport vector for hydrogen
Ammonia can be an effective medium to ship hydrogen, and there may be situations

where storage of ammonia is cheaper and easier than storage of hydrogen.

Source: Roadmap for the European Fertilizer Industry
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Business cases

The need for profitable business
cases for the investments
required.

Scaling up

The need to scale up the
technologies and to learn how to
operate these new technologies
(at scale), so that their cost
decrease.

Challenges

Lead times

The lead times for investments, in
combination with the current
uncertainty about the (future)
business case.

Intermittency

Dealing with the intermittency of
generation of renewable
electricity.

23
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Technological developments further away

MIT (Manthiram Lab)
Electrochemical Ammonia Synthesis

A B

* Electrocatalysts o xS X
* Replace pressure with voltage, _ %00 % o o o
. = S 5 s 06
reaction at mild temperature/pressure & x Y
3 04 S 04
T . = &
* Equilibrium conversions e 02 02
¢ Left: ThermOChemical ®0 200 40 600 800 ° ®0 20 400 600 800
. . Temperature (°C) Temperature ("C)
Right: Electrochemical . .
N, + H,0, Thermochemical . N, + H,0, Electrochemical
* Top: N,+H, = NH, 1
Bottom: N,+H,0 = NH, g™ N
) 06 s
§ 200 ?_
g) )4 ;
100 02
9 0 200 400 600 800 ? 0 200 400 600 800
Temperature (*C) Temperature (°C)
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Technological developments further away

<

CERTH / Aristotle University (Stoukides)
Electrochemical Ammonia Synthesis

Cathode Cathode
N, + 6H' + 6e" 5 2NH, 3H, 55 6H' +6e’ N, +3H,0 + 6e" 5 2NH, + 30* 30* 5 3/20, + 6e’
Overall reaction Overall reaction

N, + 3H, % 2NH, N, + 3H,0 %5 2NH, + 3/20,

FIGURE 1 | Schematic diagram of a solid state H* conducting cell used FIGURE 2 | Schematic diagram of NH, synthesis in an 0*" cell.
for NH,. Synthesis from its elements.
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Technological developments further away

KIER (Korea Institute of Energy Research)
Electrochemical Ammonia Synthesis

* Solid State Ammonia Synthesis (SSAS)
* 2012: 102 mol cm=2 sec'?
For next generation of electrochemical NH, synthesis

hmemenis mynisbs rate /8 107" el &
H = H s H H
Faradalc efficlency | %

-; d
. i
b
g
+
.
F4
=
mersa wyrthasis e | 90 w8 om "
s s H s
s
-
L
i
i i
L
i -
- 2
M = 3 s
H 4 H H
Faradaic efficiency

° 2015: 10-10 m0| Cm-2 Sec-l : 2-propanol (high N, sclubility) o ———
* Molten Salt Ammonia Synthesis (MSAS) . /
¢« 2019: 107 mol cm? sec’!
* Current Density: 500 mA/cm?

* 2016: 3 x 10 mol cm=2sec!
* Liquid State Ammonia Synthesis (LSAS)
* Faradaic Efficiency: 50% JER““’”&““M mem—
* Electrode Area: 400 m2sec

* “Giddey Commercial Benchmark” = 10 mol cm sec?, at >50% FE

27



Technological developments further away

Stanford University / TU Denmark
Electrochemical Ammonia, Stepwise

* 3-step cycle omits hydrogen (H,) ' Tkjg;:ﬁtmm
@ LIOH eIeCtrOIySIS .- “ Exothermic Release of Ammonia

@ Li nitridation T -~ 2LiN(s) + 6H,0 = 6LIOH + 2NH,

3 Li;N hydrolysis — \ @

Energy
» Catalyst H selectivity is irrelevant Sotea
* 88.5% current efficiency to ammonia Molten SaltElectrolysis
3 ; : 6LIOH —> 6Li + 3H,0 + %0,(g)
at industrial current density

» 2017, lab-scale production

Fig. 1 Sustainable ammonia synthesis concept cycle.
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Technological developments further away

4 N comifer_ Gefmas

NREL (US Department of Energy)
Next Generation: Biotech, Nanotech

 —

¢ : . O ” Ot (R
* Engineering the nitrogenase enzyme " ",,."/ e oG
* Photocatalyst, cadmium sulfide (CdS) .

CdS!
. nanorod
* 2017, lab-scale production NoS

* 63% efficient compared to ATP

Protein

29



Technological development further away

Joyn Bio: Bayer / Ginkgo Bioworks JV
Microbial engineering, soil biome

* GMO soil microbes, engineered to

fix nitrogen for non-legume crops, B

delivered in seed coatings A
* Announced September 2017, : BAEE R

Launched March 2018 R Y 4

* $100 million USD, Series A financing e

* |nitial target: 2022 GINKGO
Q BIOWORKS™
THE ORGANISM COMPANY

“These crops might be able to fertilize
themselves some day.”

30
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