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Abstract
Crops need adequate mineral nutrition to ensure optimal growth and yield. Nitrogen (N) and phosphorus (P) are two major 
elements that are essential for crop growth. However, situations of N-P colimitation are frequent in agroecosystems. Hence, 
our ability to optimize crop production under these conditions depends on our ability to analyze and predict the response of 
crops to colimitation. Traditionally, agronomists rely on the law of the minimum (LM) to manage colimitation situations. 
This law states that crop growth is constrained by the most limiting element. In contrast, the multiple limitation hypothesis 
(MLH) argues that crops can adapt by balancing their resource allocation with the best compromise to maximize their 
growth. These two hypotheses result in contrasting growth response patterns. The aim of the present review is to identify 
the crop response pattern to N-P colimitation through an assessment of experimental results against a conceptual frame-
work and to report the main mechanism involved in this interaction. Finally, an inventory of existing crop models handling 
N-P colimitation is presented and possible ways of improvement are proposed. This review allowed us to (1) remind of the 
published theories used to classify colimitation types, (2) highlight the fact that a large range of crops mostly showed MLH-
response patterns, (3) report that the variability in crop response patterns is linked to pedoclimatic variation, (4) identify 
multiple mechanisms that may be involved in plant adaptation to N-P colimitation, (5) suggest that the interplay between 
the different mechanisms results in complex responses that are difficult to understand experimentally, (6) report that few 
models handle N-P colimitation and that most of them rely on the law of the minimum, and (7) recommend possible ways 
to improve model formalization for a better simulation of crop responses under N-P colimitation.

Keywords N and P trade-offs · Nutrient interactions · Liebig’s law · Multiple limitation hypothesis · Soil-crop model · 
Yield response · Crop nutrition · Fertilization experiments
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1 Introduction

Nitrogen (N) and phosphorus (P) are considered the first and 
second most important elements in crop nutrition, respec-
tively (Balemi and Negisho 2012). However, both elements 
have marked differences. N is considered a mobile and avail-
able element, especially its nitrate form (Marschner 1995). In 
contrast, P is viewed as a poorly mobile element (Balemi and 
Negisho 2012), as it is strongly sorbed to the soil solid phase 
(Penn and Camberato 2019). Accordingly, the P concentration 
in soil solution and the overall P availability in soil are usu-
ally low (Ziadi et al. 2013). As a consequence of low P avail-
ability, the transfer of P in the rhizosphere is mostly driven by 
the diffusion process (Hinsinger et al. 2011), while that of N 
is mainly driven by mass flow. At the plant scale, the uptake 
of N is mainly driven by the root uptake capacity, while the 
uptake of P is mainly driven by its soil availability (Rengel 
1993). Hence, root growth and exploration are important for 
the uptake of both elements, but are of greater importance for 
P nutrition. N is often considered to have a preferential status 
among nutrients. This is because it is the nutrient that the plant 
needs the most, and the soil N supply is often suboptimal. The 
essential role of P and the fact that it cannot be substituted by 
N make us consider N-P colimitation (Rubio et al. 2003).

According to recent ecological studies, N and P colimit 
production in many ecosystems, including aquatic and ter-
restrial ones, with ecosystem responses to N and P colimita-
tion tending to be mainly synergistic (Elser et al. 2007; Har-
pole et al. 2011). Many agrosystems exhibit a lack of N and/
or P, which may lead to crop growth limitations (Vitousek 
et al. 2010; Guignard et al. 2017). To address N and P limi-
tations, agricultural practices rely mainly on fertilizers (Til-
man et al. 2002), which may lead to agronomic, economic, 
and environmental issues. Economic and environmental 
issues include poor economic profitability due to the low 
use efficiency of N and P from fertilizers (Hinsinger et al. 
2011) and the depletion of nonrenewable P reserves (Vance 
et al. 2003; Cordell and White 2014), leading to an increase 
in the price of fertilizers (Lemaire et al. 2008; Srivastava 
et al. 2021), eutrophication due to both N and P transfer from 
soil excess to water resources (Edwards and Withers 1998, 
Di and Cameron 2002),  N2O emissions that contribute to 
global climate change (Hassan et al. 2022), an overall reduc-
tion in biodiversity (Guignard et al. 2017), disturbance of 
soil biota (Srivastava et al. 2021), and more generally, dete-
rioration of N and P cycles for which variables control of 
planetary boundaries reaches high-risk levels (Steffen et al. 
2015). From an agronomic perspective, an imbalance in the 
application of N vs P by fertilization practices has emerged 
(Vitousek et al. 2010). This greatly impacts on the ecosys-
tem balance and especially on species competitiveness (Elser 
et al. 2010; Peñuelas et al. 2013).

While many studies have approached the objective of 
reducing N and P inputs to agroecosystems by fertilization, 
a common shortcoming is that N and P are often studied 
separately (Sumner and Farina 1986). However, as two 
strong drivers of crop responses that may interact with each 
other, N and P should be studied concomitantly. In addition, 
research on crop responses has traditionally relied on the 
law of the minimum (Paris 1992). However, the reported 
strong interactions between N and P cycles challenge the LM 
theory (Fageria 2001). These N and P interactions should 
be accounted for to reach optimal yields in both high- and 
low-input systems (Probert 2004; Aulakh and Malhi 2005).

Addressing the issue of N-P colimitation is complex by 
design. To be successful, the analysis of N-P colimitation 
should be based on a clear typology to understand and com-
pare crop responses (Harpole et al. 2011), to understand 
the interactions of biogeochemical cycles (Marklein and 
Houlton 2012), and to ensure that the developed models are 
able to simulate both the crop responses and the involved 
processes. This is particularly relevant for soil-crop models, 
which are well-adapted tools to study the effect of agricul-
tural practices and, notably, fertilization on crop nutrition 
and growth response patterns. Water and N uptake and 
responses to their shortages were the first processes included 
in these soil-crop models (Seligman and van Keulen 1980). 
However, the current development of formalisms able to 
model the P cycle in agroecosystems (Das et al. 2019; Hins-
inger et al. 2011; Mollier et al. 2008) and their integration 
in models that already include N formalisms (Jones et al. 
1984; Daroub et al. 2003; Delve et al. 2009) fuel the quest 
for concomitantly modeling the N-P colimitation and N×P 
interactions.

This review aims to summarize the current knowledge on 
N-P colimitation in agroecosystems and identify possible 
knowledge gaps. To do so, we will (1) recall the typology 
that could be used to differentiate and characterize the types 
of colimitation, (2) identify from N×P fertilization trials the 
crop response patterns to N-P colimitation (3) identify the 
main mechanisms that may explain such response patterns, 
and (4) make an inventory of crop models handling both N 
and P and the associated formalisms (Fig. 1).

2  Theory on nutrient colimitation 
and nutrient interactions in crops

It is well known that nutrient deficiency is a major constraint 
on plant growth and yield production (Lobell et al. 2009). 
To overcome this issue, agronomists have conducted experi-
ments and studies designed to determine optimal fertiliza-
tion rates (e.g., Nyiraneza et al. 2021). Field trials mostly 
tackle only one nutrient at a time. Agronomists vary the rate 
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of their nutrient of interest while providing the other ele-
ments in sufficient quantities so that the latter are not limit-
ing (Fageria 2001). Agronomists conceptually interpret crop 
responses with one of the two following laws, i.e., the law 
of the minimum (LM) or the multiple limitation hypothesis 
(MLH). Hereafter, we present the main theories, concepts, 
and classifications of crop colimitations. We define a colimi-
tation as a situation where the crop is submitted to at least 
two nutrient deficiencies at the same time.

2.1  Conceptual background

According to the LM, the crop responds to only one nutrient 
at a time, the one being the most limiting element. Therefore, 
other elements do not affect the response of the crop even 

if their supply is insufficient as long as there is an element 
that is even more limiting. This theory remains the simplest 
way of formalizing crop colimitation (Ågren et al. 2012).

In contrast, the MLH states that being limited by several 
elements at the same time is the normal state for plants. It 
is based on a cost‒benefit analysis and assumes that plants 
balance their resources (e.g., light, water, nutrients) in such 
a way that they become simultaneously limited by several 
resources at once. Hence, the plant adjusts its physiological 
and morphological traits in a way that optimizes the acquisi-
tion of the most limiting resources. Ultimately, this strategy 
is aimed at maintaining or maximizing its growth in the con-
text of the plant facing multiple limitations (Vitousek et al. 
2010; Chapin et al. 1987; Gleeson and Tilman 1992; Rubio 
et al. 2003).

The differences in resource allocation strategies between 
the two theories result in contrasting growth response pat-
terns, as shown in Fig. 2. As per the theory, plant growth 
responds only to the most limiting nutrient when following 
the LM. In contrast, plants respond to either of the nutrients 
when following the MLH. Overall, plant growth is always 
higher when considering the MLH. However, a high level of 
input may lead to a negative response and a yield decrease.

MLH has shown applicability in handling colimitation 
between carbon and most of the nutrients by involving 
mechanisms such as shoot-to-root ratio balancing (Chapin 
et al. 1987; Rubio et al. 2003). This is notably the case for 
nutrients such as P and N, but it is, however, noteworthy that 
it does not apply to potassium (Hermans et al. 2006). Its use 
to explain colimitation between nutrients remains uncertain 
(Ågren et al. 2012). This is mostly because some mechanisms 
involved in resource acquisition (e.g., enhanced root growth) 
are the same for all nutrients. This may imply that more com-
plex interactions exist between nutrients and could validate 

Fig. 1  Different aspects and interactions of the N-P colimitation 
study and how they help understanding this phenomenon.

Fig. 2  Theoretical growth 
response patterns as a func-
tion of nutrient supply in the 
case of two limiting nutrients 
(A and B). The curves show 
growth response predictions for 
a single limitation (green) and 
a multiple limitation following 
either the law of the minimum 
(blue) or the multiple limitation 
hypothesis (orange) (adapted 
from Rubio et al. 2003).
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the application of this theory for nutrient colimitation. Evi-
dence of an interplay between nutrients has been reported in 
the literature (Ågren et al. 2012). These interactions, which 
may be synergistic or antagonistic (Rietra et al. 2017), would 
influence the uptake mechanisms and the use efficiency of the 
related nutrients by the plant (Fageria and Oliveira 2014). 
This will therefore impact crop responses and ultimately fer-
tilization management. However, due to the small number 
of field trials involving multiple nutrient limitations, these 
interactions are often overlooked (Sumner and Farina 1986). 
The existence of such interactions may support the idea that 
plant growth response patterns may be more complex than a 
simple application of the LM, which remains nonetheless a 
good first approximation (Ågren et al. 2012).

2.2  Typology

Harpole et al. (2011) established a typology to categorize the 
different types of colimitation. This classification has been 
developed for a wide spectrum of situations, including natu-
ral and marine ecosystems. Its application to agrosystems 
may be a great opportunity to learn from cross-disciplinary 
thinking. The typology proposed by Harpole et al. (2011) is 
presented in Fig. 3 and is compared to simple limitation (a), 
which is characterized by a response to the limiting nutrient 
only (A in Fig. 3). The colimitation induced by nutrients 
A and B can then be subdivided into three categories. The 
serial limitation (b) is characterized by a plant response to 
only the single supply of the most limiting resource (A in 
Fig. 3) and by an enhanced response following the supply of 
both A and B. This category is very similar to what Rietra 
et al. (2017) define as “Liebig-Synergism.” Simultaneous 
colimitation (c) is characterized by a lack of response to 
a single nutrient supply but by a response to both A and 
B supply. Simultaneous and serial limitations are synergis-
tic by design. Finally, the independent colimitation (d) is 
characterized by a plant response to each nutrient (A or B) 
independently and by an additive, synergistic (i.e., super-
additive), or antagonistic (sub-additive) response to both A 
and B supply.

Figure 3 shows that the different categories differ not only 
in their response to nutrient inputs but also in the interpreta-
tion of the origin of the growth response. For the independent 
colimitation, the effect of A+B supply is clearly subdivided 
between the effects of A, B, and A×B interaction. In con-
trast, for the serial and simultaneous limitations, it is unclear 
whether the additional response to A+B supply is an effect 
of A×B interaction or an alternative alleviation of A then B 
limitation, as proposed by Davidson and Howarth (2007).

While several papers use these two typologies (i.e., the LM-
MLH and the simple/colimitation), they are mostly used sepa-
rately, as they address the question from two different points of 

view. The LM-MLH typology focuses on the response curve to 
a single nutrient addition, while the typology of Harpole et al. 
(2011) is based on a comparison of crop response between 
single and dual nutrient supplies. Some papers have tried to 
link these two classifications. This includes the resemblance 
between both definitions of serial limitation and that of the LM 
(Harpole et al. 2011). Similarly, simultaneous colimitation can 
be considered an application of LM under a very strict nutri-
ent ratio where the degree of deficiency is equivalent for both 
nutrients (Ringeval et al. 2021) or if we consider the group of 
equally limiting resources as a single resource (Harpole et al. 
2011). Consequently, the serial and simultaneous colimitations 
are applications of the LM, while the definition of independ-
ent colimitation is more in line with the MLH. This highlights 
the fact that demonstrating the presence of an independent 

Fig. 3  Typology of crop colimitation compared to single limitation 
in the case of two limiting nutrients (A and B). Red, blue, and pur-
ple colors represent crop responses for A, B, and A×B interactions, 
respectively (adapted from Harpole et al. 2011).
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colimitation of crop growth by two nutrients invalidates the 
relevance of LM in this colimitation context. While these 
typologies may apply in principle to all nutrient interactions, 
it may be difficult to generalize a given typology and even 
more so a type of interaction to all possible nutrient interplays. 
Accordingly, Rubio et al. (2003) show that the crop response 
depends on the two nutrients involved and consequently pro-
pose to study each pair of nutrients specifically. They further 
suggest that the plant response patterns to colimitation are not 
symmetrical, i.e., the response may follow the MLH or the LM 
depending on which of the two nutrients is the most limiting.

Another study conducted by Ågren et al. (2012) com-
pared LM and MLH formalisms to simulate crop responses 
to colimitation. They found that the transition between limit-
ing elements is smoother than the fixed threshold proposed 
for the LM and that the growth optimum would be repre-
sented by an interval rather than by a single nutrient ratio, 
as proposed by Güsewell (2004). In the case of more severe 
deficiencies, crop responses will follow the LM (Ågren et al. 
2012). This suggests that the degree of stress influences the 
crop response pattern to colimitation.

Based on these evidences, we suggest that the study 
of crop response to colimitation should be performed for 
each nutrient pair with a gradient of availability of the two 
nutrients so that the nature of the most limiting nutrient and 
the degree of stress vary sufficiently. It is also important to 
identify the mechanisms involved in the crop response to 
colimitation, particularly when the pattern follows the MLH. 
This mechanistic understanding allows not only to support 
the theory but also to understand, quantify, and anticipate 
the crop response.

3  Experimental evidences of crop responses 
to nitrogen‑phosphorus colimitation

Agronomists have been interested in determining the opti-
mal N and P supply to ensure maximum plant growth. 
They have found that both elements undergo a dilu-
tion effect during biomass accumulation, resulting in 
a decrease in the element concentration (Lemaire et al. 
2019). Hence, a strong correlation exists between plant N 
and P that could be described by a linear relation (Nyiran-
eza et al. 2021). This relationship reflects the evolution of 
the N:P ratio, which decreases during the growth of the 
crop as the dilution of N is more pronounced (Greenwood 
et al. 2008). Recent studies show that the crop P dilution 
curve and P nutrition status may be affected by a defi-
ciency in N (Ziadi et al. 2007; Bélanger and Ziadi 2008). 
Hence, the nutrient status of N seems to affect that of P, 
which may greatly influence the diagnosis of deficiencies 
and the reasoning for fertilization. Therefore, N-P colimi-
tation seems an interesting and agronomically relevant 

case to study crop responses to colimitation due to the 
importance of taking into account the nutrient status of 
both elements in determining crop needs and responses.

3.1  Analysis of field evidences

Many experiments have been carried out with the intention 
of verifying the presence or absence of synergy in response 
to N and P addition. In their review, Aulakh and Malhi 
(2005) mostly reported synergistic responses in studies con-
ducted on a large set of conditions and crops, including sor-
ghum, sesame, cotton, cucumber, and peas. They showed the 
high variability of this N×P synergy, which was responsible 
for 13 to 89% of the yield response of cereals to combined 
N and P input. Under certain conditions, they even reported 
that the interaction effect could overshadow the effects of 
both N and P alone. However, this did not prevent them from 
finding additive crop responses under certain conditions for 
crops such as sunflower or linseed.

Few authors have been interested in verifying the validity 
of the LM and MLH theories by comparing experimental 
results to theoretical crop response patterns, and most tri-
als do not refer explicitly to the typology of colimitation. 
The only exception that we found was the work of Paris 
(1992), who analyzed a fertilization trial under field con-
ditions on maize subjected to different N and P fertilizer 
doses. They found that the application of the LM allowed 
us to better explain the response patterns than curves with 
smoother transitions. As we cannot generalize on the basis 
of one study, we believe that these results should be con-
firmed for other crop species and conditions by using facto-
rial N×P experimental protocols. These trials should be run 
under field conditions, as the results of greenhouse experi-
ments may differ from those of field trials. This is largely 
explained by the uncontrolled factors that are not found 
under greenhouse conditions (Sumner and Farina 1986). 
Furthermore, it is important to highlight the importance of 
the initial level of the nutrient in the soil which affect heav-
ily the crop responses to fertilizer inputs (Serme et al. 2018; 
Abdissa et al. 2011). Consequently, a pre-requisite to these 
trials would be an insufficient soil nutrient supply that would 
allow a response to nutrient inputs.

We reviewed on January 2023 the results of N-P factorial 
field trials that share enough data to study the characteristics 
of N-P colimitation (Table 1).

We searched in Google Scholar and Web of Science 
for fertilization studies involving both N and P. Keywords 
included “nitrogen,” “phosphorus,” “crop responses,” “fer-
tilizer rates,” “fertilizer crop response,” “yield response,” 
“growth response,” “fertilizer level,” “fertilizer level,” and 
“response curve.” We selected only studies that fulfilled cer-
tain conditions, including (1) only field trials, (2) factorial 
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inputs of both N and P fertilizers subjected to the same 
agricultural practices (irrigation, pesticides, etc.) and other 
nutrients supplied in sufficient amounts, (3) presence of the 
response (i) to both N and P separately, or (ii) to one nutri-
ent only but with a significant N×P interaction and that in 
order to avoid situations of single limitations (Fig. 4), and 
(4) informations on the effects of N, P, and N×P interaction. 
Data were treated by considering biomass accumulation first 
then grain yield to identify the crop response pattern and 
colimitation type. For the case of multisite and multiyear 
experiments, we considered that a significant response in 
only 1 year or one site is sufficient to consider the effect. 
Overall, 32 fertilization trials were considered, covering a 
substantial number of crop species and botanical families. 
Growth response pattern, MLH or LM, and type of colimita-
tion were recorded.

We compared the results of the field trials to both the 
LM/MLH theories and the classification of colimitation pro-
posed by Harpole et al. (2011). We considered that the LM 
applies when the crop responds to only one element with a 
significant interaction. In contrast, if the crop responds to 
both elements independently, the MLH applies. For MLH 
cases, we used the significance of the N×P interaction to 
reveal a synergistic (super-additive) or antagonistic effect 
(sub-additive). The absence of the N×P effect for the MLH 
cases was interpreted as a simple additivity. Figure 4 sum-
marizes the way we classified the different situations, while 
Fig. 5 shows concrete examples from the reviewed studies 
for each of the reported colimitation types. The results are 
synthetized in Fig. 6.

While the studied experiments used crops from several 
botanical families with different photosynthetic pathways 
and contrasting nutrient requirements (e.g., wheat, maize, 
tomato, faba bean, kale), nearly all of them responded to 
both N and P independently (84% of the studied cases), 
which indicates an MLH growth response pattern (Fig. 6). 
Additionally, the N×P interaction was in most cases (63%) 
significant (Fig. 6). In accordance with the growth response 
pattern, the colimitation type was most often of the inde-
pendent type (84%), with 41% of super-additive (synergistic) 
response, and 37% of additive response. In two studies (6%), 
we found contrasting results depending on the fertilizer lev-
els, where colimitation was super-additive at low levels of 
input but sub-additive at high levels of input (Fig. 6). The 
latter coincides with a negative yield response. Notably, 
simultaneous limitations were not observed.

The diversity of the studied crops (Table 1) shows that 
these findings are not restricted to a few species only. For 
example, trials on potato showed that both total and market-
able tuber yields responded to N and P and that the N×P 
interaction was significant (Zewide et al. 2012; Nekinikie and 
Dechassa 2018). The response of potato yield to N, P, and 
N×P remained significant despite a significant effect of crop 

cultivar (Nekinikie and Dechassa 2018). In parallel, during 
the last 19 years of a 50-year-field experiment on maize, 20% 
of the yield increase was attributed to P alone vs a 103% yield 
increase with N alone, while the addition of both N and P 
resulted in a 225% yield increase compared to the unfertilized 
control (Schlegel and Havlin 2017). These results mean that 
102% of the increase in maize yield was due to the effect 
of the N×P interaction. It remains important to study more 
crops’ responses to N and P addition across contrasting pedo-
climatic conditions to generalize these findings.

When considering the response of legumes to N and P 
fertilization, it was found that the effects of N, P, and N×P 
interaction were all significant on faba and mung bean yield 
as well as its components, including the number of pods 
per plant and the 100-kernel weight (Adak and Kibritci 
2016; Yin et al. 2018). The effect of the N×P interaction 
was especially marked at high N fertilizer levels, which fuels 
the assumption that the N×P interaction is more important 
at higher yields (Aulakh and Malhi 2005; Yin et al. 2018). 
In contrast, N×P fertilization trials on common bean showed 
that the crop responded equally well to N and P, while the 
N×P interaction was not significant in most cases, except for 
1 year and on one site (out of two sites × 2 years) (Chekanai 
et al. 2018). This example interestingly illustrates that the 
crop response can follow the MLH without being synergistic 
or antagonistic.

In addition to the works presented above, we found some 
works that we could not analyze but that present valuable 
information. For example, 11 field trials for two brassicas 
crops, namely, kale and pasja, showed that crops responded 
mainly to both N and P and with a significant N×P interac-
tion (Wilson et al. 2006). Hence, this result supports the 
MLH. Zingore et al. (2022) analyzed previous studies of the 
yield response of maize to nutrient omissions in contrasting 
soil conditions in Sub-Saharan Africa. They found that the 
starvation of either N or P resulted in a significant yield 
reduction in 89 and 78% of cases for N and P, respectively. 
In most cases, the N supply was responsible on average for 
a yield response twice as high as the P supply. Zingore et al. 
(2022) found similar results with rice which responded to N 
and P starvation regardless of the water management (irri-
gated lowland, rainfed lowland, and rainfed upland).

Globally, a tendency can be noted, which is that crops 
respond mostly to both N and P independently, which is 
consistent with the MLH response pattern. While we found 
some cases of LM responses, it was most often due to an 
absence of response to P, implying that N is the most limit-
ing element. We reported only one case of LM-type with an 
absence of response to N to which the crop seems to be able 
to respond under nearly any conditions. This seems to be in 
agreement with the literature, which shows that the effect 
of P input on N is less marked than that of N on P (Sumner 
and Farina 1986; Aulakh and Malhi 2005), and this seems 



Crop response to nitrogen‑phosphorus colimitation: theory, experimental evidences,…

1 3

Page 7 of 22 3

Table 1  Summary of the reviewed fertilization trials including crop 
name and botanical family, reported responses to N, P and NxP 
inputs, the type of crop response pattern (LM/MLH) and colimitation 
type we found for each case, as well as the reference of the associated 

article. In this table, I-A stands for Independent additive, I-Sup-A and 
I-Sub-A stand respectively for Independent super-additive and Inde-
pendent sub-additive, and S-N and S-P stand respectively for Serial 
N and Serial P

Crop Scientific name Botanical 
family

N response P response N×P effect Growth 
response 
pattern

Type of 
colimitation

Reference

Tomato Lycopersicum  
esculentum L.

Solanaceae Yes Yes No MLH I-A Abu-Alrub et al. 
(2019)

Barley Hordeum vulgare L. Poaceae Yes Yes No MLH I-A Al-Ajlouni et al. 
(2010)

Kale (site 2) Brassica oleracea 
var. acephala

Brassicaceae Yes Yes No MLH I-A Chakwizira et al. 
(2009)

Swede (site 2) Brassica napus 
subsp.  
napobrassica

Brassicaceae Yes Yes No MLH I-A Chakwizira et al. 
(2011)

Common bean Phaseolus vulgaris 
L.

Fabaceae Yes Yes No MLH I-A Chekanai et al. 
(2018)

Wheat Triticum aestivum 
L.

Poaceae Yes Yes No MLH I-A Girma et al. 
(2007)

Rice Oryza sativa L. Poaceae Yes Yes No MLH I-A Serme et al. 
(2018)

Potato Solanum  
tuberosum L.

Solanaceae Yes Yes No MLH I-A Setu and Mitiku 
(2020)

Groundnut Arachis hypogaea 
L.

Fabaceae Yes Yes No MLH I-A Tekulu et al. 
(2020)

Sorghum Sorghum bicolor L. 
Moench

Poaceae Yes Yes No MLH I-A Wang et al. 
(2017)

Potato Solanum  
tuberosum L.

Solanaceae Yes Yes No MLH I-A Zewide et al. 
(2012)

Canola Brassica napus L. Brassicaceae Yes Yes No MLH I-A Nuttall et al. 
(1992)

Canola Brassica napus L. Brassicaceae Yes Yes Yes MLH I-Sup-A Brennan and Bol-
land (2009)

Wheat Triticum aestivum 
L.

Poaceae Yes Yes Yes MLH I-Sup-A Brennan and Bol-
land (2009)

Kale (site 1) Brassica oleracea 
var. acephala

Brassicaceae Yes Yes Yes MLH I-Sup-A Chakwizira et al. 
(2009)

Alfalfa Medicago sativa L. Fabaceae Yes Yes Yes MLH I-Sup-A Fan et al. (2016)
Maize Zea mays L. Poaceae Yes Yes Yes MLH I-Sup-A Getnet and 

Dugassa (2019)
Safflower Carthamus  

tinctorius L.
Asteraceae Yes Yes Yes MLH I-Sup-A Golzarfar et al. 

(2012)
Buckwheat Fagopyrum  

esculentum 
Moench

Polygonaceae Yes Yes Yes MLH I-Sup-A Ullah et al. 
(2012)

Maize Zea mays L. Poaceae Yes Yes Yes MLH I-Sup-A Kamanga et al. 
(2014)

Potato Solamum  
tuberosum L.

Solanaceae Yes Yes Yes MLH I-Sup-A Nekinike and 
Dechassa 
(2018)

Egusi melon Citrullus lanatus 
(thunb.) Mansf

Cucurbitaceae Yes Yes Yes MLH I-Sup-A Olaniyi et al. 
(2008)

Maize Zea mays L. Poaceae Yes Yes Yes MLH I-Sup-A Schlegel and 
Havlin (2017)

Sorghum Sorghum bicolor 
(L.) Moench

Poaceae Yes Yes Yes MLH I-Sup-A Schlegel and 
Havlin (2021)

Mung bean Vigna radiata L. Fabaceae Yes Yes Yes MLH I-Sup-A Yin et al. (2018)
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to confirm the assumption of nutrient interactions being 
nonsymmetrical. However, this tendency does not apply to 
legumes, which mostly show MLH-type responses regard-
less of the most limiting nutrient.

3.2  Effect of climatic and soil conditions 
on between‑site variations

Despite the clear tendency evidenced above, the literature 
review further showed that the crop response to N and P 
availability varies substantially from one field trial to 
another. Differences between responses across the different 
sites may be due to variations in soil nutrient availability 
(Abdissa et al. 2011; Serme et al. 2018) or the effect of a 
greater stress effect (e.g., water) which outperform the N and 
P effect (Chakwizira et al. 2009). The relative importance of 
climate and soil properties on the crop response to N and P 
may differ between crops and water management strategies 
(Zingore et al. 2022).

Many factors varying with time may affect the N×P inter-
action. These factors may be climatic, such as temperature or 
global radiation, edaphic, such as soil moisture and aeration, 
or linked to the genetic and physiological specificity of the 
plant, such as its age, phenology, growth rate, root plastic-
ity, and shoot-to-root ratio (Fageria 2001; Aulakh and Malhi 
2005). In addition to uncontrolled factors, we found that 

several technical choices may affect crop nutrition, such as 
the mode of application, the type of fertilizer, its dose, and 
the splitting of the dose, which are variable from one trial 
to another. This variability can affect the results of the trial 
and our ability to compare the different works between them. 
This is particularly relevant for N, for which the nutrient 
status of the plant can be greatly affected by the number and 
timing of applications. Therefore, to ensure a better ability to 
compare and interpret the results, we recommend the adop-
tion of homogeneous experimental designs.

Although the majority of the reviewed papers seem to 
indicate that the response of the crops to an N-P colimita-
tion is of the MLH type, some studies showed that the crop 
responds to only one element at a time, which supports the 
application of the LM (Dai et al. 2010). However, some of 
these results can be interpreted as the soil already providing 
enough of the nutrients to which the crop is not responding. 
This hypothesis is supported by the fact that most of these 
studies consider the amount of N and P added with fertiliz-
ers rather than the resulting N and P soil availability. It is, 
however, well known that crops respond more to the latter 
(Wilson et al. 2006). Another hypothesis is that the plant 
is more limited by the plant’s capacity to take up nutrients 
than by their availability in the soil. This hypothesis is more 
plausible for the lack of response to N than to P, since plant 
uptake is more limited by plant uptake capacity for N but is 

Table 1  (continued)

Crop Scientific name Botanical 
family

N response P response N×P effect Growth 
response 
pattern

Type of 
colimitation

Reference

Tef Eragrostis tef  
(Zuccagni) Trotter

Poaceae Yes Yes Yes MLH I-Sup-A 
(Low 
Input) / 
I-Sub-A 
(High 
Input)

Dereje et al. 
(2018)

Faba bean Vicia faba L. Fabaceae Yes Yes Yes MLH I-Sup-A 
(Low 
Input) / 
I-Sub-A 
(High 
Input)

Adak and Kibrit-
ici (2016)

Kale (site 3) Brassica oleracea 
var. acephala

Brassicaceae Yes No Yes LM S-N Chakwizira et al. 
(2009)

Swede (site 1) Brassica napus 
subsp.  
napobrassica

Brassicaceae Yes No Yes LM S-N Chakwizira et al. 
(2011)

Sesame Sesamum indicum 
L.

Pedaliaceae Yes No Yes LM S-N El Mahdi (2008)

Globe arti-
choke

Cynara cardunculus 
L. var. scolymus 
(L.) Fiori

Asteraceae Yes No Yes LM S-N Ierna et al. (2006)

Wheat Triticum aestivum 
L.

Poaceae No Yes Yes LM S-P Takahashi and 
Anwar (2007)



Crop response to nitrogen‑phosphorus colimitation: theory, experimental evidences,…

1 3

Page 9 of 22 3

conversely more limited by low soil P availability (Rengel 
1993). A third hypothesis is that nutrients other than N and 
P may constrain the response of crops (Aulakh and Malhi 
2005). Accordingly, the few cases where the LM would work 
better than the MLH could be explained by the specificity 
of these case studies rather than by the adequation by the 
design of the crop response to the LM.

3.3  Effect of temporal variations

Setu and Mitiku (2020) and Serme et al. (2018) reported that 
crops may respond or not to P depending on the year. Nuttall 
et al. (1992) also found significant N × year and P × year 
interactions. This interyear variation was already reported by 
Aulakh and Malhi (2005) for the N×P interaction in a previ-
ous review, which found that the response could be highly 
synergistic or only additive from year to year. This variation 
may be explained by the weather effect (Nuttall et al. 1992).

Because of the interyear variation, long-term experimen-
tation seems necessary to understand the N×P interaction, 
except that this may generate other confounding effects, such 
as long-term soil acidification and soil organic matter min-
eralization, which will in turn affect the interaction (Sumner 
and Farina 1986). During a 50-year experiment, Schlegel 
and Havlin (2017) reported few differences between yield 
response to N in the last 19 years compared to the first 31 
years at 20 kg P  ha−1. However, they reported lower yields 
with 0 kg P  ha−1, and hence, the yield response to P addition 
increased over time, which they explained by the fact that 
indigenous soil P was depleted over time.

We have reached the same overall conclusions concerning 
the nature of the N×P interaction as previous reviews (Sum-
ner and Farina 1986; Aulakh and Malhi 2005; Rietra et al. 
2017), which is that N×P is mostly synergistic and sometimes 
additive. Additionally, we presented novel insights into the 
question of N-P colimitation by confronting experimental 

results with a clear typology. We highlighted the fact that 
crops most often responded to both N and P. This allows us 
to state that the synergy of the N×P interaction is most often 
of the independent type and therefore that the crop response 
pattern to N-P colimitation probably follows the MLH. This 
does not prevent us from reporting works where the response 
follows the LM and therefore other types of colimitation, 
such as serial colimitation. We also reported that the extent 
of the response to N and P as well as the type of colimita-
tion was affected by climatic and edaphic factors and was 
subjected to interyear variations. While we found that neither 
of the two formalisms could explain all of the possible situa-
tions, MLH seems to be the formalism that most adequately 
captures reality in most of them. Additionally, this formalism 
does not exclude some explanations of LM-like response pat-
terns, as explained above. It remains to be determined which 
mechanisms can explain this behavior of the plant and to 
quantify to what extent the LM deviates from reality con-
sidering a large set of conditions to know if it is a feasible 
compromise to trade accuracy for simplicity.

4  Mechanisms of interaction 
between nitrogen and phosphorus

As mentioned above, crops respond by far to a N-P colimi-
tation by following the MLH rather than the LM (Fig. 6).  
At the plant level, one of the mechanisms supporting this 
behavior is the direct substitution of a limited element by 
another with a similar physiological role (Saito et al. 2008). 
One example of that is the substitution of potassium by 
sodium (Battie-Laclau et al. 2013). However, this mecha-
nism is not common between plant nutrients (Rubio et al. 
2003). Typically N and P cannot be substituted by each other 
due to their respective specific role in plant physiology. 

Fig. 4  Flowchart summarizing the successive steps used to classify 
the fertilization trials and to determine their crop response pattern 
(MLH/LM) and their type of colimitation. Green boxes stand for the 

MLH response pattern, yellow boxes for the LM response pattern, 
and red boxes for cases that are not reported or not considered in this 
review.
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Fig. 5  Examples from the reviewed studies for all the reported cases of colimitation and crop response pattern: (a) Independent super-additive 
(MLH) - Maize (Schlegel and Havlin 2017), (b) Independent additive (MLH): Sorghum (Wang et  al. 2017), (c) Serial N (LM): Sesame (El 
Mahdi 2006), (d) Serial P (LM): Winter wheat (Takahashi and Anwar 2007), (e) Independent super-additive (Low Input) - Independent sub-
additive (High Input): Faba bean (Adak and Kibritci 2016). The examples show yields for different treatments as compared to control. Each 
example has treatments corresponding to control, P input, N input, and N×P input. The last example has two treatments for P input, N input, 
and N×P inputs as the crop behaved differently between low and high inputs. N and P effects are represented respectively by green and orange 
arrows. N×P effect is represented by either blue (+ positive) or red (− negative).
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Agronomists rarely investigate the ecophysiological mecha-
nisms behind the observed N-P colimitation in crops (Sum-
ner and Farina 1986).

Although the mechanisms explaining the MLH-like 
response to N-P colimitation are still not fully understood, 
several mechanisms were described (Fageria 2001). These 
mechanisms have mainly been studied by ecologists in natu-
ral ecosystems, we can assume that their findings also apply, 
at least partly, to agroecosystems. Hereafter, we reviewed 
briefly the current knowledge on the mechanisms supporting 
the crop response patterns to N-P colimitation.

These mechanisms were subdivided into two categories. 
We define direct interactions by which plants invest N com-
pounds directly to acquire P compounds and vice versa. We 
also consider indirect interactions by which one element influ-
ences the availability, uptake, or translocation of the other 
element through its impact on an intermediate variable, which 
in turn affects the other element. These direct and indirect 
mechanisms could occur both within the plant and its rhizo-
sphere All the studied interactions are summarized in Fig. 7.

4.1  Nitrogen fixation and phosphatase secretion

A common example of direct interaction is symbiotic  N2 
fixation in which the plant invests ATP (i.e., a P-compound) 
to acquire N (Schulze et al. 2006). Conversely, several crops 
can secrete phosphatase enzymes (i.e., N compounds) that 
hydrolyze organic P in the soil, thus increasing P availabil-
ity in the soil (Marklein and Houlton 2012). Symbiotic  N2 
fixation processes are specific to legume crops only, while a 
large range of crops appear to secrete phosphatases.

Concerning symbiotic  N2 fixation, plants have to invest 
24 mol of P as ATP to fix 1 mol of N as  N2 (Schulze et al. 
2006). P deficiency therefore affects symbiotic  N2 fixation 
(Schulze 2004). The addition of P fertilizer to soils charac-
terized by a low N and P availability results in an enhanced 
nodulation and a higher nitrogenase activity (Leidi and 
Rodriguez-Navarro 2000; Kouas et al. 2008; Chekanai et al. 
2018). This could explain that the N×P interaction is more 
complex for legume crops (Aulakh and Malhi 2005) and that 
legumes always presented a response to P addition contrary 
to nonlegumes in the reviewed studies (Fig. 6). Accordingly, 
nonlegume crops would exhibit response patterns to N-P 
colimitation closer to the LM than legumes when N is the 
most limiting nutrient.

Concerning acid phosphatase (APase) secretion, a meta-
analysis conducted by Marklein and Houlton (2012) on a wide 
variety of terrestrial ecosystems showed the strong inhibiting 
effect of P and conversely the stimulating effect of N on APase 
activity (Fig. 7). Chen and Moorhead (2022) further reported 
in their meta-analysis that the positive effect of N addition on 
APase activity was significant only for the first 5 years.

Data about APase activity remain scarce, and hence, the 
actual P acquired per unit of N invested remains difficult to 
assess accurately (Marklein and Houlton 2012). Wang et al. 
(2007) estimated that crops invest approximately 30 mol of 
N to acquire 1 mol of P through APase secretion.

The literature mentions the existence of an upper thresh-
old of soil N and P availability for both APase secretion and 
symbiotic  N2 fixation above which the mechanism and the 
related uptake of P and N are not stimulating anymore (Sal-
vagiotti et al. 2008; Banerjee et al. 2012). At the other hand, 
if symbiotic  N2 fixation and APase secretion were the only 
mechanisms to be considered to explain N×P interactions, 
this would mean that each mechanism could be completely 
inhibited if the element to invest by the plant (e.g., N for 
APase secretion) was the most limiting. However, it is a 
matter of fact that the two mechanisms continue even under 
conditions of strong limitations on the element to invest 
(e.g., Pueyo et al. 2021; Marklein and Houlton 2012).

4.2  Impact of the indirect interactions 
between nitrogen and phosphorus

The literature points out several indirect mechanisms that 
may affect N-P colimitation. The form of rhizospheric N 
taken up by plants and its P nutrition statues affect the 
rhizosphere pH and subsequently P availability in the 
rhizosphere and P uptake by plants (Zeng et al. 2012; 
Hinsinger 2001; Rietra et al. 2017; Gérard 2016; Tang 
et al. 2001). While symbiotic  N2 fixation mainly aims at 
acquiring N, it tends to acidify the rhizosphere (Fig. 7) and 
hence to increase indirectly P availability in calcareous 
soils (Kouas et al. 2008; Alkama et al. 2012).

Additional complexity arises from interactions with 
other elements then N and P. Carbon (C) is notably 
involved in numerous mechanisms and the overall plant 
equilibrium. It is therefore refers to the C-N-P ratio in 
soil and plants (Achat et al. 2016). Examples of C-N-P 
balance in the plant are the trade-off in resource allocation 
between cluster roots and nodules (Thuynsma et al. 2014, 
Pueyo et al. 2021) and the symbiosis with mycorrhizae 
(Marschner and Dell 1994; Dotaniya and Meena 2015; 
Allen et al. 2020). This C-N-P trade-off is more generally 
illustrated by the fact that the plants adjust their shoot-to-
root ratio with consequences on the C/N and C/P ratios 
(Rubio et al. 2003).

Root growth and plasticity are another explanation for 
the indirect effect between N and P nutrition. It is however 
considered that the root architecture is more important for a 
poorly mobile element in soil such as P than for N (Hill et al. 
2006; Rangarajan et al. 2018; Hadir et al. 2020). Qian and 
Schoenau (2000) proposed that the N effect on root growth 
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may improve P absorption through a better exploration of 
the soil.

In summary, a range of direct and indirect mechanisms 
are susceptible to be involved in N×P interactions (Fig. 7). 
Their integration within soil-crop models is however still a 
numerical challenge and a matter of debate to know whether 
it may effectively improve the predictive power of model 
outputs.

5  Nitrogen × phosphorus interactions 
and colimitation in soil‑crop models

Regarding the complexity of the N×P interaction and the 
mechanism involved, soil-crop models could be a pertinent 
tool to guide research to fill knowledge gaps (Das et al. 
2019). Their utilization is especially relevant to evaluate a 
greater number of drivers and processes at once compared to 
what can be done in field experiments. Soil-crop models are 
also of interest to promptly test a large range of agronomic 
practices (Hinsinger et  al. 2011). The role of modeling 
approaches in investigating rhizospheric processes linked 
to P and N nutrition has already been proven (Kuppe et al. 

2022). The integration of nutrient deficiencies within crop 
models started in the 1980s (Jones et al. 2017) and focused 
mainly on N assuming that other elements are supplied 
sufficiently, which is not an acceptable hypothesis in most 
conditions (Probert 2004). Most existing soil-crop models 
account for either N or P and consequently handle only one 
nutrient at a time (Zhang et al. 2007). Consequently, the 
N×P interaction and the question of its formalization have 
not yet received much attention. This delay in the consid-
eration of the N×P interaction by the soil-crop models may 
be explained by (1) there is already a delay in the modeling 
of P uptake compared to N uptake (Das et al. 2019), (2) the 
integration of the P cycle in crop models is generally done 
by plugging a P module into an existing model focusing 
solely on the impact of the element on the crop or through 
the coupling with a model managing the N effect, leaving 
aside the possible interaction with other factors (e.g., Zhang 
et al. 2007), (3) there are few factorial datasets including 
the variations of two nutrients compared with those focus-
ing on a single nutrient (Sumner and Farina 1986), which 
implies that it is easier to calibrate and evaluate one nutrient 
limitation model compared with multiple nutrient limitation 

Fig. 6  Characteristics of the growth response pattern of crops in 
fertilization trials (n = 32; see Table 1). LM and MLH stand for the 
law of the minimum and the multiple limitation hypothesis, respec-
tively. N, P, and N×P represent nitrogen, phosphorus, and nitrogen × 
phosphorus interactions, respectively. The typology of colimitation 

is given according to Harpole et  al. (2011) (Fig.  3). The independ-
ent super- and sub-additive colimitation (contrasting) stands for field 
trials characterized by a super-additive colimitation at low N and P 
inputs and a sub-additive colimitation at high N and P inputs.
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models, and (4) finally, there are real gaps in our knowledge 
on the mechanism implied as mentioned before.

5.1  The state of the art

Modern models that manage the N and P cycles concomi-
tantly are scarce currently (Delve et  al. 2009). Table  2 
summarizes a group of soil-crop models that have marked 
differences in their formalization in relation to N×P simu-
lation. Among semimechanistic soil-crop models that take 
into account both the N and P effects on crops, we can 
mention APSIM (Keating et al. 2003; Delve et al. 2009), 
DSSAT (Dzotsi et al. 2010), and EPIC (Jones et al. 1984) for 
daily step crop models (Table 2). We can also mention the 
monthly time-step crop model SCAN (Rowe et al. 2006) or 
the biogeochemical model CENTURY (Parton et al. 1992). 

Most of these models were not initially developed for P 
management. They have integrated modules simulating the 
P cycle only afterward (e.g., Daroub et al. 2003). The func-
tioning of the feedback of a P deficiency on crops in these 
models is very similar to that of a N deficiency. They rely on 
a ratio between the current nutrient concentration in tissues 
and a critical concentration threshold. This concept is very 
similar (or identical) to that of the dilution curve and nutri-
tion index (Lemaire et al. 2019). If the ratio indicates subop-
timal nutrition, the model will use it as a reducing factor for 
all the affected variables (e.g., Dzotsi et al. 2010; Delve et al. 
2009). When the models compute several nutrition indices 
that are suboptimal, the models handle the situation by 
applying the LM and conserving the lower ratio, which cor-
responds to the most marked deficiency. Another approach 
proposed by Zhang et al. (2007) consists of the joining of 

Fig. 7  Schematic representation of mechanisms involved in N and P 
acquisition and N×P interactions in the soil‒plant system of a crop. 
Nitrogen fixation and all related processes are a specificity of legume 
crops, while other mechanisms are common to most crops. The rep-
resentation focuses on the trade-off and effect between nutrients (C, 
N, P). Blue arrows stand for carbon (C) effect (dashed) and allocation 

(plain), green for nitrogen (N), and orange for phosphorus (P). Pools 
of the three nutrients are represented through plain boxes. Processes 
and organs that are involved in N and P acquisition are also repre-
sented respectively with rounded dashed boxes and simple dashed 
boxes.  H+ and  OH− stand respectively for proton and hydroxyl and 
APase stands for acid phosphatase.
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three different models, namely, N_ABLE, PHOSMOD, and 
POTAS, which, respectively, handle N, P, and K. At each 
time step, each component will compute the biomass growth 
increment allowed by each of the three resources. Then, the 
model will perform a strict application of the LM keeping 
only the lower of the three computed growth increments. 
The evaluation of this model showed satisfactory prediction 
for biomass, yield, and N concentration. However, discrep-
ancies were reported for the simulation of P concentration as 
well as the biomass and yield under certain fertility condi-
tions. According to the authors, this may be due to the lack 

of a formalization of the N×P interaction and suggests the 
need for substantial improvements in this aspect.

As reported earlier, one of the flaws of the LM is that it 
does not allow for a representation of the synergistic effect 
of the N×P interaction in most situations. Therefore, we may 
hypothesize that models that are based solely on this formal-
ism will mostly fail to reproduce responses to N and P, as N-P 
colimitation responses are mostly of the MLH type (Fig. 6). 
Consequently, the use of these models as decision-making 
tools would lead to an overestimation of the fertilizer need.

There are only a few studies involving these models 
in N-P colimited situations. We can notably mention the 

Table 2  Overview of the main soil-crop models handling N and P cycles in (agro-)ecosystems with the related key simulated processes. R and 
NR stand respectively for “represented” and “not represented.”

Crop Model APSIM DSSAT EPIC QUEFTS PARNJIB

Model category Semimechanistic Semimechanistic Semimechanistic Hybrid Empirical
Spatial scale Field Field Field Field Field
General handling of N:P nutrient statues

  Stoichiometric fac-
tors N/P

No Limit P uptake NR NR NR

  N-P colimitation 
management

Law of the minimum Law of the minimum Law of the minimum Mean of the potential 
yields

Reduction factor 
accounting for 
all stresses

Soil and root representation
  Soil representation 1D profile 1D profile 1D profile No spatialization No spatialization
  Root representation Root depth, density, 

and Biomass per layer
Root depth, density per 

layer, Root radius
Rooting depth and 

weight per layer
NR NR

  Root response to N 
deficiency

NR Reduce shoot-to-root NR NR NR

  Root response to P 
deficiency

NR Partitioning coef NR NR NR

  pH simulation Computed/proton bal-
ance

Input Computed Input Input

Rhizospheric processes
  Symbiotic  N2 fixa-

tion
R R R NR NR

  Nodules representa-
tion

Implicit R NR NR NR

  N effect on  N2 
fixation

Triggered by N defi-
ciency/no direct effect 
on the rate

Triggered by N defi-
ciency/no direct effect 
on the rate

Inhibition NR NR

  P effect on  N2 fixa-
tion

NR NR NR NR NR

  N effect on APase 
secretion

NR NR NR NR NR

  P effect on APase 
secretion

NR NR NR NR NR

  Organic acid secre-
tion

Citrate only NR NR NR NR

  Mycorrhizae NR NR NR NR NR
References Delve et al. (2009); 

Keating et al. (2003); 
Robertson et al. 
(2002)

Dzotsi et al. (2010); 
Jones et al. (2003); 
Boote et al. (2008)

Sharpley and Williams 
(1990)

Jones et al. (1984)

Sattari et al. (2014) Reid (2002)
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evaluations of the DSSAT model on maize and sorghum sub-
mitted to contrasting N and P fertility conditions for which 
the model was able to find the most limiting factor and to 
produce good quality simulation for N and P nutrient uptake 
with variations depending on irrigation and fertilization. The 
model was able to simulate both aerial dry biomass (with 
a normalized root mean square error (nRMSE) of 10–22% 
for maize and 13–29% for sorghum) and yield (nRMSE = 
16% and 19% for maize and sorghum, respectively) well 
(Amouzou et al. 2018). Similar observations were found for 
the evaluation of the APSIM model. Such models can then 
be used to identify the most limiting nutrients. The yield 
predictions of the model in the context of dual stresses were 
also found to be satisfactory (Kinyangi et al. 2004; Delve 
et al. 2009). The recent work of Das et al. (2022) evalu-
ated the APSIM model against a 35-year-long dataset with 
a broad range of N and P fertilization rates. They reported 
that the model was able to account for 88% of the grain 
yield variations. However, they found that the model tends 
to overpredict lower yields, and they judged the model per-
formance just below satisfactory for yield simulation. The 
EPIC model was used by Worou et al. (2015) to simulate rice 
grown in multiple sites with contrasting N and P inputs. The 
model simulations showed satisfactory results in predicting 
the leaf area index (LAI) with a model efficiency (EF) of 
0.98. The prediction of the aerial biomass and yield was 
decent but less precise, with EFs of 0.61 and 0.67, respec-
tively. Furthermore, they reported unsatisfactory results in 
the validation of the model with over 100% rRMSE (rela-
tive root mean square error) for grain yields. However, the 
authors attributed this error to an inability of the model to 
reproduce severe environmental conditions such as flood-
ing and drought rather than the model handling of nutrient 
limitations. The fact that these models had good results by 
relying solely on the LM may imply that although it does not 
reflect the biological reality, the LM remains a good approxi-
mation. However, the small number of evaluations of these 
models prevents us from drawing more general conclusions.

The QUEFTS crop model proposes an approach quite 
different from those previously mentioned. This model has 
been specially designed to manage the interaction between 
N, P, and K. It is considered a hybrid model because it 
combines at the same time relations that are rather mecha-
nistic and others that are purely empirical (Janssen et al. 
1990). While the prediction of nutrient availability in soil 
is computed independently for each nutrient, the actual 
uptake of each nutrient depends both on its own avail-
ability in soil and on the soil availability of the two other 
elements. Based on the actual uptake of the elements, 
the model computes two possible yields for each nutrient 
based on the uptake of each of the two other nutrients. 
The final yield is the mean of all the potential yields. This 
formalism encompasses multiple interactions between 

nutrients during both nutrient uptake and yield forma-
tion. These formalisms suggest that the yield simulated 
by the model varies with the availability of any of the 
elements. The predicted yield response would then fol-
low the MLH. The QUEFTS model has been widely used 
and has shown satisfactory results (Sattari et al. 2014), 
with nRMSE ranging between 13.5 and 24.4% for crop N 
uptake and between 13.6 and 42% for crop P uptake across 
the reviewed studies (Xu et al. 2013; Xu et al. 2019; Wei 
et al. 2022; Yibati et al. 2022). A similar approach is pro-
posed by the LINTUL-Cassava-NPK model, which uses 
a combined nutrient nutrition index that is more strongly 
impacted when the crop suffers from multiple limitations. 
This model showed a decent simulation of storage root dry 
matter (root mean squared error of 308 g  m−2) yield and 
nutrient uptake (root mean squared error of 0.8 g  m−2 for 
P and 5.1 g  m−2 for N) under contrasting nutrient supply 
conditions (Adiele et al. 2022).

Some purely empirical models also include formalisms 
that are consistent with MLH-like response patterns. This is 
notably the case for the PARNJIB model, which computes 
a potential yield from weather and nutrient soil availability 
(Reid 2002). The reductions are then scaled to the potential 
yield. The applied reduction factor is equal to the square root 
of the sum of the squares of the reduction factors of each 
nutrient (Reid 1999). Such formalization implies a strong 
interaction between nutrients, and we may hypothesize that 
such a model is likely to follow the MLH. However, as the 
nutrients in sufficient supply do not impact the final yield 
(Reid 2002), we assume that the model is able to have MLH 
behavior in the domain where the two nutrients are in sub-
optimal conditions. According to the model formalisms, 
the model would be able to reproduce cases of independent 
colimitation but not those of serial and simultaneous colimi-
tation (Fig. 3). However, it is noteworthy that the model is 
formalized in such a way that during a severe shortage of 
one nutrient, the final yield is more strongly affected by this 
nutrient supply. This behavior is closer to the LM.

Ågren et al. (2012) proposed another empirical model that 
offers the possibility of representing an MLH-like response 
through its flexible allocation parameters. Although this study 
and model are innovative in comparing the MLH to the LM 
from a modeling perspective, the fact that the simulations are 
not compared to real datasets prevents the two possible ways 
of formalizing the colimitation from being evaluated.

Both the QUEFTS and PARNJIB models seem to be able 
to represent an MLH-type response pattern, with few param-
eters and a straightforward formalization. In addition, both 
seem to perform well and have been evaluated under con-
trasting conditions and with different crops. Notably, most 
empirical models are more likely to reproduce the MLH-
type response patterns than most mechanistic models. We 
hypothesize that this situation may be due to the lack of 
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knowledge and related formalisms on the implied mecha-
nisms. Although most empirical models have the advantages 
of being easy and parsimonious, they also have some disad-
vantages. For instance, the empirical relations used in these 
models are only valid within a restricted domain of validity 
(Reid 2002), which hampers their robustness and generic-
ity. These models are also not fitted to be interpreted from 
a mechanistic perspective (Reid 2002). As a consequence, 
they do not represent the most adapted tools to combine 
the adequate prediction of agronomic parameters related to 
N-P colimitation with the mechanistic understanding of the 
processes involved in N×P interactions.

The lack of representation of rhizospheric processes 
within field-scale soil-crop models is clear (Table 2). In 
particular, for those linked to P, such as APase secretion or 
organic acid exudation, there are only a few exceptions, such 
as citrate inclusion within the APSIM crop model (Wang 
et al. 2013).  N2 fixation is a more commonly represented 
mechanism, especially in semimechanistic models (Table 2), 
although its formalization may be too simplistic. Indeed, 
none of the reviewed models explicitly represents the nod-
ules with the exception of the DSSAT crop model. Addition-
ally, we can clearly see that most of the semimechanistic 
models represent  N2 fixation and its inhibition by N input 
in the soil. In contrast, the P effect on  N2 fixation is globally 
missing (Table 2). This may imply that even though these 
models simulate  N2 fixation, they cannot be used to simulate 
MLH-like response patterns related to P supply. Finally, few 
models seem to handle the feedback of N and P shortages on 
the shoot-to-root ratio (Table 2).

While this review focuses mainly on crop responses, it is 
important to mention that N and P cycles may interact with soil 
processes such as the decomposition of SOM through the C:N:P 
ratio of the soil. This formalism was previously addressed in the 
literature (e.g., Lewis and McGechan 2002), although the extent 
of its impact on crop responses is yet to be determined.

It is commonly accepted that the degree of complexity of 
models is inversely proportional to their spatiotemporal scale. 
It seems that the modeling of the response to an N-P colimita-
tion does not follow this rule. Indeed, while all semimechanis-
tic soil-crop models reviewed in this paper follow strictly the 
LM, some global models have a more complex formalization. 
This is the case for the global ecosystem model CASA-CNP 
(Wang et al. 2007; 2010), which balances C, P, and N alloca-
tion following a “cost‒benefit analysis.” This method allocates 
nutrient in the most efficient way to optimize growth. They rely 
on rhizospheric processes such as APase secretion (investment 
of N to acquire P) and symbiotic  N2 fixation (investment of 
P to acquire N). Another example would be that of the land 
surface model ORCHIDEE, which represents N and P effects 
on  N2 fixation, APase secretion, and shoot-to-root ratio (Goll 
et al. 2017). The adaptation of the N14CP ecosystem model 
to agricultural settings shows that when the model simulation 

was evaluated against multiple long-term experiments with dif-
ferent management strategies, the model simulated reasonably 
well yield in most situations (15% of yield underestimation), 
but when P was the most limiting, the model significantly 
underestimated yield by 77%) (Janes-Bassett et al. 2020). We 
hypothesize that this may be due to the lack of formalisms 
representing N investment in acquiring P.

Similarly, terrestrial ecosystem models seem to be well 
advanced in the handling of colimitation, and while they use 
LM as a general approach, they include formalisms such as 
flexible C:P ratios, APase secretion, and N and P effects on 
 N2 fixation, as reviewed by Achat et al. (2016). The FUN 
model also allocates C, N, and P in an optimal way to ensure 
the highest net production. It relies not only on both plant 
APase secretion and  N2 fixation but also on mycorrhizal 
uptake and APase exudation. A key feature of this model is 
that it simulates different types of mycorrhizae to favor N or 
P acquisition (Allen et al. 2020).

The development of N-P colimitation modeling in eco-
systems and global models proves that the integration of 
similar formalisms within soil-crop models is a realistic 
goal. Soil-crop models should be inspired by these other 
models and implement new formalisms based on current 
knowledge on N-P.

5.2  Future improvements

The prevalence of the LM within soil-crop models confirms 
the general statement of Yin et al. (2021) that crop models 
seem to grow in number but are not necessarily improved. 
They argue that crop models should rely on physiological 
knowledge, which will improve both the fitness and allow 
the mechanistic understanding of the model outputs.

To ensure this physiological meaning in the N×P interac-
tion, rhizosphere mechanisms should be represented, as they 
seem at the core of this interaction (Fig. 7). It is noteworthy 
that some global models and terrestrial ecosystems mod-
els have already integrated such rhizosphere mechanisms 
with simple formalisms (e.g., Wang et al. 2007; Achat et al. 
2016). Analytical solution for the one- or two-dimensional 
convection-diffusion is a way for simplifying and upscal-
ing rhizosphere mechanisms to practical fields (Darrah 
et al. 2006; de Willigen and van Noordwijk 1994; Roose 
et al. 2001; Lin et al. 2023). Hence, our mechanistic under-
standing and data availability are crucial to parametrize and 
evaluate the analytical solution for representing rhizosphere 
mechanisms in soil-crop models (Hinsinger et al. 2011). 
Considering the rhizosphere mechanisms reviewed in Sec-
tion 3, APase secretion and the effect of P on symbiotic  N2 
fixation are good candidates to be incorporated in soil-crop 
models to enable them to reproduce MLH response patterns.

Models that do not explicitly simulate root traits will 
have difficulty reproducing more complex effects of N-P 
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colimitation. Accordingly, this would be the case for most 
soil-crop models that have a 1D representation of the root 
profile (Table 2). Although this 1D may be sufficient to 
handle shoot-to-root variations through stress factors (e.g., 
Dzotsi et al. 2010; Göll et al. 2017), Naab et al. (2015) have 
already reported the limits of their model in simulating sev-
eral common practices linked to P management, such as 
deep or banded fertilization. They pointed out the need for 
a 2D representation of the root system for a better simulation 
of P uptake. Although it simulated only a part of the crop 
cycle, models with a more spatially resolved root system 
have proven to be able to simulate the effect of N×P interac-
tion (Rangarajan et al. 2018).

Another limitation is related to the fact that most models 
consider pH as a fixed input parameter rather than a computed 
variable (Table 2). Some models, such as EPIC, compute it annu-
ally (Table 2). which may improve the simulation quality of the 
model over the long-term, but it will not be able per se to inte-
grate the effect of pH changes on N×P interactions within an 
annual crop cycle. From the reviewed models, only an earlier ver-
sion of APSIM seems to compute pH based on a comprehensive 
proton balance and at a daily time step (Hochman et al. 1998).

Finally, interactions within the plants such as the inter-
play between nutritional status and nutrient allocation 
mechanisms also deserve to be accounted for. While models 
have not developed yet such a formalism to our knowledge, 
agronomists have reported evidence of a N×P interaction 
(Bélanger and Ziadi 2008).

Considering the large number of processes involved, the 
quest for implementing all of them seems unrealistic. As 
illustrated by Wang et al. (2013), exhaustivity is not neces-
sarily a pre-requisite for a good simulation. They showed 
that the integration of citrate exudation did not heavily 
impact the quality of the P simulation in the APSIM model. 
Hence, the key steps prior to implement new processes 
within soil-crop models are the preliminary selection, evalu-
ation, and ranking of the processes to implement is a key 
step prior to their formalization and integration within crop 
models. The priority should be given to the processes that 
are well known, that affect the most crop responses, and 
that can be formalized as simply as possible. The evalua-
tion of the simulations obtained by including the abovemen-
tioned mechanisms as well as those obtained by using the 
LM against real datasets would allow us to quantitatively 
compare between LM and MLH formalisms with clear quan-
tification and to determine which is better to represent N-P 
colimitation in the soil-crop model.

In view of the important number of mechanisms poten-
tially involved in the N×P interaction as well as different 
ways to implement them in crop models, from very mecha-
nistic approaches to rather empiric ones, we assume that 
the development of such aspects would result in a greater 
diversification of soil-crop models.

6  Conclusion

The study of N-P colimitation needs a clear theoreti-
cal framework. Previous works proposed two theories of 
growth, namely, the law of minimum (LM) and the mul-
tiple limitation hypothesis (MLH). According to the LM, 
the plants respond only to the most limiting nutrient, while 
the MLH is based on a cost‒benefit analysis and accounts 
for growth responses to all the involved nutrients. Several 
categories of colimitation do exist, and they are based on 
the growth response due to each nutrient input as well as the 
presence or absence of a synergistic or antagonistic effect. 
The fact that these typologies were used mainly for eco-
logical studies on natural ecosystems does not prevent their 
utilization in analyzing crop responses in agro-ecosystems.

By confronting the results of field experimentation against 
these typologies, we found that when the crop response is 
exposed to a N-P colimitation, it follows the MLH in the 
vast majority of cases and that the N×P interaction is mostly 
synergistic. This is especially true for legume crops. How-
ever, this tendency may vary according to both climatic and 
edaphic factors. Temporal differences were also reported due 
to both interyear variations and long-term cultivation effects.

We subsequently identified several direct (e.g.,  N2 fixa-
tion and APase secretion) and indirect (e.g., root plasticity 
and pH modification) mechanisms that could explain these 
crop response patterns. However, we reported many knowl-
edge gaps in these mechanisms, such as the relative weight 
of each of these mechanisms, the exact conversion ratio 
between N and P investment, and its variations according 
to the studied species as well as the climatic and edaphic 
conditions. However, these gaps are complex to investigate 
because of the interplay between the different processes.

Soil-crop models are appropriate tools to capture and deci-
pher the complexity of N-P colimitation and N×P interac-
tions. However, currently, few models handle both nutrients at 
the same time. Additionally, those that handle both nutrients 
manage the crop responses with an application of LM. This 
consideration is not aligned with experimental evidences. 
Moreover, no studies have evaluated whether this simplifi-
cation is worth the reduced biological relevance compared 
with the MLH. Nevertheless, while all mechanisms cannot 
be integrated into crop models, implementing those that are 
the most important with a simple but (semi)mechanistic for-
malism would actively contribute to enhancing the quality of 
the simulation of crop responses to N-P colimitation and thus 
allow us to optimize and benefit from this interaction.

All this knowledge concerning N and P nutrition should 
be better accounted for to support the achievement of higher 
yields and more sustainable agroecosystems. Unraveling 
knowledge on N×P interactions would allow us to make 
better use of the involved mechanisms and leverage them 
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to optimize our management practices, including a better 
balance in fertilizer inputs as well as an overall reduction in 
the use of synthetic fertilizer and hence enhance the sustain-
ability of the systems while ensuring higher yields.
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