

LA VALORISATION AGRICOLE DES PRODUITS ORGANIQUES:

UNE PRATIQUE TRADITIONNELLE QUI RÉPOND À DE NOUVEAUX ENJEUX Prise en compte des produits organiques et de leurs caractérisations dans les outils de gestion de la fertilisation

Fiona OBRIOT & Caroline LE ROUX

LDAR, Laboratoire Départemental d'Analyses et de Recherche de l'Aisne

Introduction

Rappel sur la gestion de la fertilisation

Enjeux économiques

Enjeux environnementaux

Enjeux sur la qualité marchande

Enjeux sur la réglementation

→ Face à ces enjeux, il est important de considérer la place des PRO ou MAFOR pour y répondre.

Introduction

PRO: ressource renouvelable pour amender et fertiliser les sols

Provenant de sources variées et de processus variés

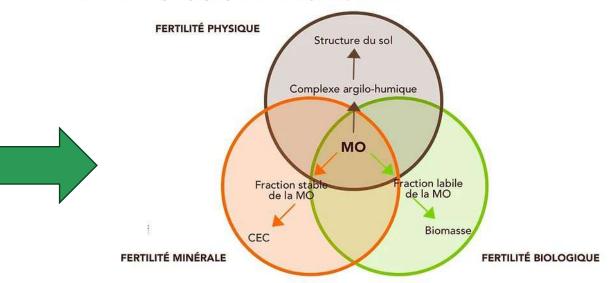
Variabilité des PRO

Substitution des engrais minéraux

Recyclage des cycles / Economie circulaire

Fumier A : Fumier de bovins très compact de litière accumulée Fumier B : Compost de fumier de bovins

Estimations		Eléments minéraux									
pour une tonne de fumier (valeur avant sortie d'étable)	N		P205		K20		MgO		Humus		
	Α	В	A	В	A	В	Α	В	A	В	
Composition en minéraux (1) ou rendement en humus (2) (kg/T de PB)	5,8	8	2,3	5	9,6	14	1,5	2,2	63	105	
Coef. de valorisation des minéraux (3)	0,2	0,1	1		1		1		1		
Quantité d'éléments valorisables dans l'année suivant l'apport	1,16	8,0	2,3	5	9,6	14	1,5	2,2	3	1	
Valeurs unitaires des éléments (4)	0,7 €/kg		0,46 €/kg		0,34 €/kg		0,65 €/kg		0, 069 €/kg		
Valeurs totales des éléments (€ / T de fumier)	0,81	0,56	1,06	2,3	3,26	4,76	0,98	1,43	4,35	7,25	

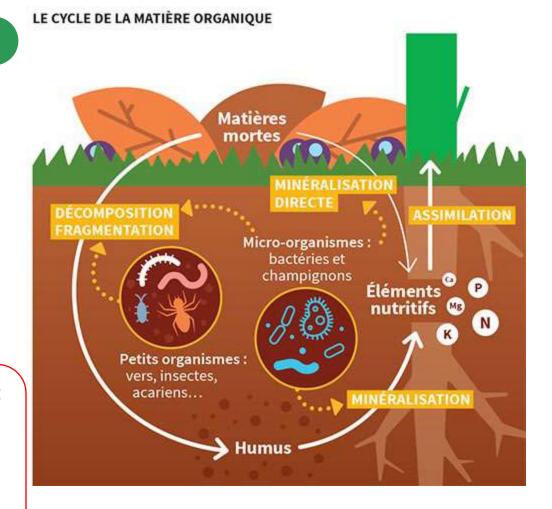


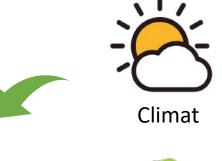
Valeurs des deux types de fumiers :

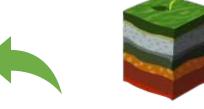
Fumier A: 10,46 €/T; Fumier B: 16,30 €/T

- (1) source des données : Fertiliser avec les engrais de ferme, (Institut de l'élevage et al, 2001)
- (2) Rendement en humus du fumier = Qté PB * teneur en MO * coef. Isohumique k1 : Fumier A : 180 kg MO/T de produit brut et k1=0,35 ; Fumier B : 210 kg MO/T de produit brut et k1=0,5 ;
- (3) coefficients d'équivalence engrais, d'après, Fertiliser avec les engrais de ferme, (Institut de l'élevage et al, 2001)
- (4) sources : Elément minéraux : prix distributeurs constatés sur la campagne 2006-2007 Humus : voir Valeur de l'humus *

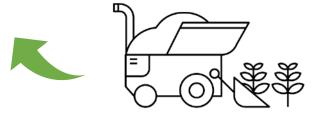
Source: Estimations par le groupe régional Sols &MO et Agro-Transfert R&T, 2007


© TERREOM


Comprendre le cycle de la décomposition des MO


Décomposition

PRO ou MAFOR = de la matière organique apportée au sol (morte + vivante), composée d'un « cocktail » d'éléments nutritifs.


- + Risque de pertes d'éléments par :
- Volatilisation NH₃⁺
- Lixiviation
- + Emission de GES (N₂O...)

Type de sol

Pratiques culturales

Connaitre les caractéristiques des PRO

Quantitative

Qualité de la matière organique

Analyses

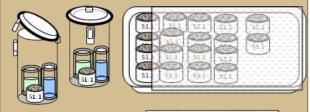
Cinétiques de minéralisations C et N

ISMO Indice de Stabilité de la MO

C organique

N organique

P, K, Mg, S


Nmin, CaCO₃

ETM

PCB/HAP

Pathogènes

FD U44-163 FD U42-163

Dispositif CARBONE en bocaux hermétiques

1. Dispositif AZOTE
Dit « en plateau »

FD U44-162

ISMO = 44.5 + 0.5 SOL - 0.2CEL + 0.7 LIC -2.3 Ct3

CEL = cellulose LIC = lignine SOL = soluble Ct3 = miné C à 3j

Usage ?

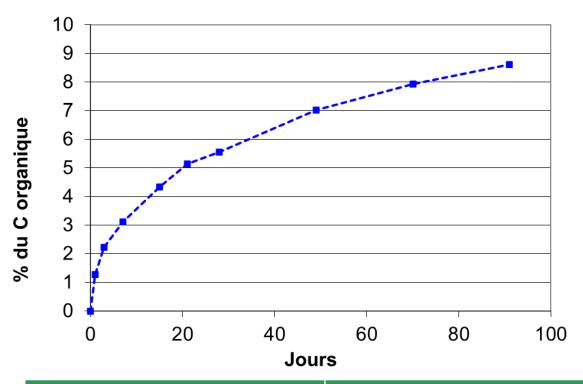
Connaitre les teneurs en éléments précis des PRO

- → Vérifier l'innocuité + la conformité
- → Mise sur le marché et/ou apport au champ
- → Paramétrer les modèles

Usage ?

Paramétrer des modèles

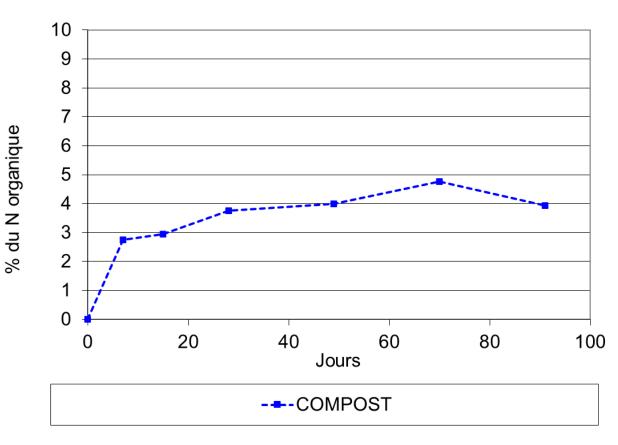
→ Prédiction du stockage de C et fourniture N au champ Et Vérifier la conformité


→ Informations sur l'efficacité des PRO

PRODUIT TYPE COMPOST:

Corg = 17g/100g de produit brut Ntot = 1.42 g/100g de produit brut Nmin = 0.045 g/100g produit brut

Evolution du taux de minéralisation du Carbone



Référence Produit	PRODUIT TYPE COMPOST
ISMO	74% MO

Exemple d'un cas d'étude

FD U44-163 – amendement organique

Evolution du taux de minéralisation de N

Présentation AzoFert®

AzoFert®: OAD pour la fertilisation azotée (utilisateurs = agriculteurs, conseillers), outil terrain

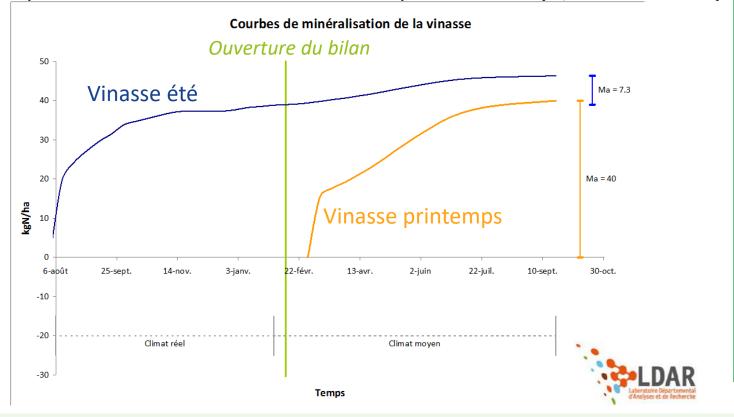
Bulletin de résultats (Données LDAR)

Spécifique : région + parcelle

Références et paramètres

Fiche de renseignements

Reliquat mesuré ou estimé


Données climatiques

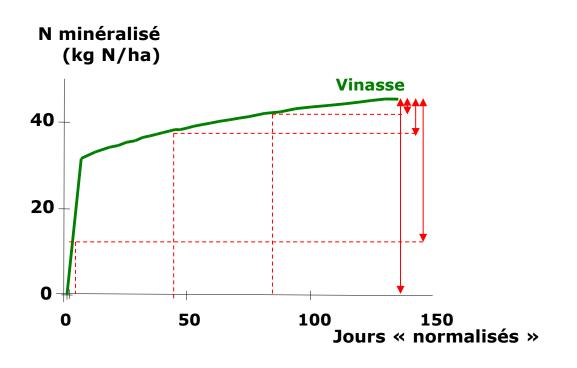
AzoFert®: OAD pour la fertilisation azotée (utilisateurs = agriculteurs, conseillers), outil terrain

Effets court terme = année culturale

- Effet de la nature
- Effet de la date d'apport
- + possibilité de saisir les caractéristiques du PRO (C, Ntot et Nmin)

Effets à long terme = apports répétés

 Prise en compte dans le poste de minéralisation de l'humus du sol → au travers des habitudes culturales, fréquence & la nature des apports organiques + stock de Ntot dans le sol



AzoFert®: OAD pour la fertilisation azotée (utilisateurs = agriculteurs, conseillers), outil terrain

Effet de la date d'apport

LDAR
Laberatoire Départemental
d'Analyses et de Recherche

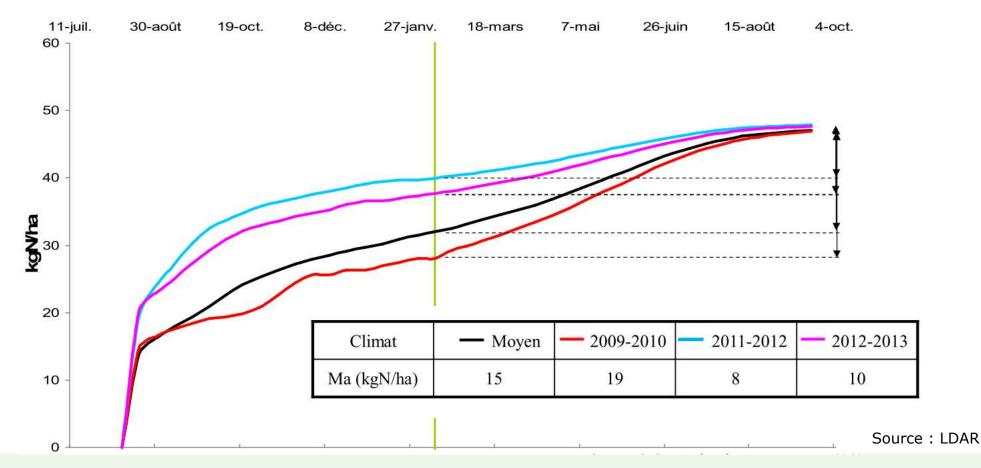
• Exemple : vinasse de sucrerie à différentes dates d'apport pour un climat moyen

Date d'apport	Contribution en N pour la betterave (kg N/ha)
15 Août	6
15 Septembre	9
15 Octobre	13
15 Novembre	17
15 Mars	48

Source: LDAR

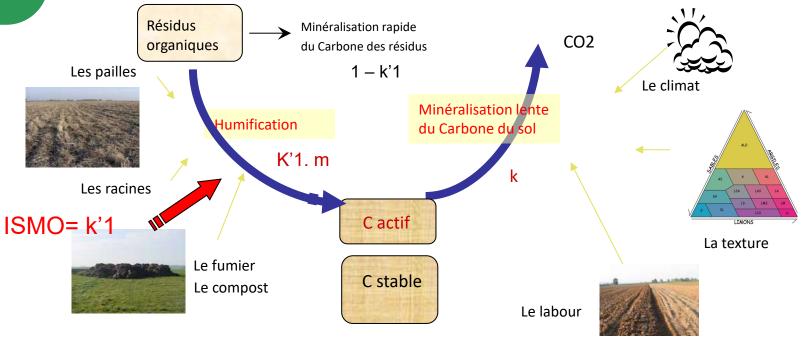
Caractéristiques de la vinasse: C: 16.2 %, N: 2.4 %, Nmin: 0.08 %

Dose d'apport : 3 t/ha



AzoFert® : OAD pour la fertilisation azotée (utilisateurs = agriculteurs, conseillers), outil terrain

Effet du climat


• Exemple : vinasse pour différentes années climatiques

Application de l'ISMO dans AMG

*AMG, du nom de ses auteurs: Andriulo, Mary, Guérif - INRA de LAON

Les principes du calcul: Ca (C actif) = 33% Corg dC/dt = k'1.m - k.Ca

k= 0.02 à 0.06 fonction teneur argile, calcaire, travail du sol

The state of the s

Prise en compte des PRO dans la gestion de la fertilisation azotée

Application de l'ISMO dans AMG

Produits organiques : apport de C dans les sols

Quantité de C apportée dépend :

- de la nature du produit (richesse en C et rendement en humification)
- de sa dose et fréquence d'apport

Apport de C humifié par quelques produits organiques :

Produit organique	Quantité apportée (T ou m3 /ha)	Fourniture de C humifié (kg/ha)
Fumier de bovin	30	1100
Lisier	30	75
Fientes de volailles	6	250
Compost déchets verts	15	900
Pailles restituées	5	450

Source : Agro-Transfert Ressources et Territoires

éléments

Valeur fertilisante : P, K, Mg

→ Présentation du principe de calcul dans **RegiFert :** OAD pour la fertilisation de fond

1-Estimation de la quantité totale en élément à apporter

A = Q . TMS . T . 1000

A = Qté de l'élément correspondant à l'apport du PRO (kg/ha)

Q = Qté de PRO, correspondant à un apport (t produit frais/ha)

TMS = Teneur en matière sèche du PRO (kg MS/kg produit brut)

T = Teneur en l'élément chimique du PRO (kg élément chimique/kg de

produit sec)

 $A = 74 \text{ kg de } P_2 O_5 / \text{ha}$

Q = 20t/ha de fumier TMS = 0.24 kg MS/kg MB T = 0.0155 kg P_2O_5/kg MS avec TL = 0.80

2- Calcul de la contribution annuelle de l'élément chimique

Contribution dans l'année $1 = C^1$ (kg élément/ha)

$$C^1 = A \cdot TL$$

$$C^1 = 60 \text{ kg de } P_2 O_5 / \text{ha}$$

Contribution dans l'année $2 = \mathbb{C}^2$ (kg élément/ha)

$$C^2 = (A - C^1) \cdot TL$$

$$C^2 = 12 \text{ kg de } P_2 O_5 / \text{ha}$$

Contribution dans l'année $3 = C^3$ (kg élément/ha)

$$C^3 = (A - C^1 - C^2) \cdot TL$$

$$C^3 = 2 \text{ kg de } P_2 O_5 / \text{ha}$$

TL = Taux de Libération annuelle d'un élément chimique pour un PRO (0 à 1)

Prise en compte des PRO dans la gestion de la fertilisation des autres éléments

Compléments

- Données d'entrée : type de produit, quantité de l'apport (fiches de renseignements = données agriculteurs)
- Si plusieurs PRO sont utilisés → Même calcul pour chaque PRO
- Même procédé de calcul pour les autres éléments K₂O, MgO.

Exemple de rapport

Apport de produits organique	s -> Cont	tribution à dédui	re								
Nature du produit (t/ha	Apport	Fréquence	Année de l'apport (kg/ha)			1 an après l'apport (kg/ha)			2 ans après l'apport (kg/ha)		
	(Viia)		P,0,	K,0	Mg0	P,0,	K,0	Mg0	P,0,	K,0	Mg(
Fumier Bovins Viande 24%	20	Tous les 1 ans	60	65	25	12	15	1	1	1	1
Lisier Bovins Viande 25%	30	Tous les 1 ans	80	150	45	1	1	1	1	1	1

Perspectives

Autres outils?

PerN – 42 mois, début : décembre 2023 (piloté par IFV, autres partenaires : CA, LDAR, GRAB, EPLEFPA, Bioline by Invivo – INRAe EGFV, Institut Agro Montpellier – INRAe UMR ABSys).

- Objectif: Développement d'un outil opérationnel de raisonnement et de pilotage de la fertilisation azotée, minérale ou organique de la vigne.
- Les travaux s'appuient sur un prototype informatique déjà existant (N-Pérennes), qui préconise une dose d'apport d'azote minéral en début de campagne, en fonction des conditions pédoclimatiques, des pratiques culturales et de l'objectif de rendement de la parcelle.

PhosphoBio – 51 mois, début : octobre 2020 (piloté par Arvalis)

- Objectif: PhosphoBio se donne pour objectif de faire un état des lieux de la fertilité phosphatée des sols en Agriculture Biologique et adapter des outils de diagnostic au contexte de l'AB.
- Outil: Calculette permet de raisonner les doses de PRO mais aussi dans la rotation et le type des PRO.

Organisé par

Merci!

LA VALORISATION AGRICOLE DES PRODUITS ORGANIQUES :

UNE PRATIQUE TRADITIONNELLE QUI RÉPOND À DE NOUVEAUX ENJEUX